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1 Introduction

Software systems are among the most complex human-constructed systems
[10]. Unlike physical systems, such as computers, cars, or buildings, where
certain elements are often repeated frequently, in good software systems usu-
ally there are no similar parts – if there are, they are abstracted into mod-
ules and referenced wherever needed. Similarity between building elements
of software is probably the lowest among all human products. This implies
that scaling up a software entity is not merely a repetition of same elements
in larger sizes, usually we have to come up with new, not-yet-existing ele-
ments. In addition, new elements often interact with many existing elements
so, as a result, complexity of software system as a whole grows much faster
then linearly with size [10].

We differentiate between two fundamental groups of software: essential
and accidental software complexity[10]. Essential software complexity is in-
herent to the problem that is being solved, and cannot be minimized or
removed. Accidental software complexities include limitations and imper-
fections of the software methodology, tools or languages being used. By
improving those aspects we can reduce accidental complexity and improve
the productivity of the software development process. On the other hand, es-
sential software complexity will always be present and it cannot be reduced.
For example, implementing chess-playing software will always be a complex
task, no matter which language, tool or methodology we use to develop it.

A common approach for reducing accidental complexity is raising the
level of abstraction. Practically, this means focusing on important aspects
of software development process. Instead of dealing with bits, registers and
memory allocation, software languages with increased level of abstraction
allow us to focus on business objects and the logic of the problem domain.
In addition, the translation to a lower level of abstraction needed for actual
execution is often automated and abstracted away from the software devel-
oper. This simplifies software development and enables higher quality of end
products.

One of the core problems with software is its invisibility [10]. Ability to
visualize software structures has been recognized as an important aspect of
software development long time ago, but up until early 1990’s there was no
standard way of doing it. With the rise of object-oriented (OO) languages
and Unified Modelling Language (UML) [55], the visualization of software
and the word ”model” entered the mainstream of software development.

UML models are typically used as design time constructs mainly because
of the traditional work-flow they have been used in. This work-flow assumed
the creation of a (mainly) class model of the software and the generation
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of a source-code skeleton which was then used as a staring point for the
implementation phase. All later phases, even the structural modifications,
were usually done in the source code rather than in the model. The main
reason for this is the additional effort required to maintain the model. Af-
ter some time, the initial model was usually deprecated and used only for
documentation purposes.

However, Model Driven Architecture (MDA)[59] and executable models
changed this paradigm by making the models the main software artefact. The
term ”executable models” means that models are turing complete. Since ex-
ecutable, models can be used for specification of complete application func-
tionality which can be verified by executing the model-based tests in the
model interpreter. Such workflow considers models as the main intellectual
property of the software development process. Similarly as the machine code
in the traditional workflow, the source code is considered only as a tempo-
rary form towards the binary executable used in a production. Note also that
semantic completeness of executable models enables automated implementa-
tion phase in which the complete source code is generated from a model.
Model executablity and translatability are key features of MDA.

Although there exist software development methodologies that share the
MDA vision [49] [65], they are not widely accepted within the industry. The
main reasons for this are that they target real-time and embedded systems,
use non-standard ”flavor” of UML or are supported only by proprietary tools.
However, development of executable UML standards for the general software
development is very slow and still in the development [57].

In the traditional workflow, different software qualities are measured and
estimated using source-code complexity metrics. By changing the core arte-
fact of software development process, complexity metrics should be updated
and adapted as well. Measuring complexity of executable UML models is
a relatively new area and has not yet been investigated thoroughly. When
defining software complexity metric on executable UML models, we need to
take into account the twofold purpose of models: not only are they used as
specification of complete software functionality, but they are also used as a
visualization, documentation and a communication tool.

Executable UML models usually use the same or simplified syntax as the
traditional UML models. An important difference added by the executable
models are clear execution and timing semantics. However, the most of the
complexity metrics applied to the traditional UML models can be applied
to the executable models as well. Typically, executable models include class
models, state-machine models and component models. However, on the ac-
tion level, for specifying detailed processing, a textual models are typically
used. From the complexity point of view, this processing model (language)
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follows similar control- and data-flow rules as many other traditional lan-
guages. This implies that the most traditional, source-code level complexity
metrics apply on processing model as well.

In this report we will give an overview of the state-of-the-art in software
and UML model complexity metrics (section 2 and 3 respectively). In the
future we expect to create a selection of complexity metrics that will be
adapted and applied to xtUML models. Therefore, the section 4, gives an
overview of executable UML methodologies and standards with special focus
on the xtUML methodology. In the end, a conclusion and the future work is
briefly described.
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2 Software Complexity

On the action level, for specifying detailed processing, executable UML mod-
els use the textual notation, similarly as all the traditional programming
languages. The important difference is in the fact that this textual action
language allows specification of only processing part, no structural elements
can be defined using it. From the complexity point of view, this textual
processing model follows similar control- and data-flow rules as many other
traditional languages. This implies that the most traditional, source-code
level complexity metrics apply on the processing model as well. This chapter
will investigate those metrics.

With growing software complexity, it’s measuring and management be-
come of paramount importance. Still, there are many unanswered questions
about nature of software complexity and its properties. Basili [6] defines soft-
ware complexity as a measure of the resources expended by a system while
interacting with a piece of software to perform a given task. If the interact-
ing system is a computer and the task is program execution, complexity may
be defined as memory and execution time required to perform the calcula-
tion. If the interacting system is an engineer, and the task is understanding,
maintaining or debugging the software, then complexity can be defined as
the difficulty of performing those tasks in a given time-period.

Software complexity is usually estimated or measured in order to be able
to do better work effort estimations, to judge about design alternatives or to
be able to predict erroneous software modules. Early estimations therefore
often rely on some kind of requirements analysis. During design phase, more
precise estimations are possible in order to choose among different design
alternatives. Once a software project is delivered and the maintenance phase
has started, a complexity measure may be used to predict modules which
might contain disproportional amount of errors and to predict the effort of
maintenance tasks.

In literature, software complexity is studied from several different per-
spectives. Each of those perspectives focuses on one single aspect of software
complexity but those perspectives are not necessarily orthogonal i.e. in cer-
tain cases high correlation can be observed. Some of the most frequently
mentioned perspectives to software complexity are:

• Software size is the most frequent complexity metric focusing on
counting basic building blocks, such as lines of code

• Psychological and cognitive complexity focuses on human under-
standing aspect of complexity
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• Cyclomatic complexity focuses on control flow complexity of soft-
ware

• Computational complexity is primarily concerned with algorithmic
complexity of software

• Data/information flow complexity analyses complexity of inputs,
outputs and data interdependencies within software or some of it’s parts

• Functional size as complexity metric measures value that software
brings to the end users

2.1 McCabe’s Cyclomatic Complexity and its variants

McCabe[48] presented graph-theoretic view on software complexity by ab-
stracting software as a control flow graph. In that graph, nodes are groups
(blocks) of commands of a program that can be executed only in (one pos-
sible) sequence. A directed edge connects two nodes if the first command in
the target node might be executed immediately after the last command in
the source node. Typically, edges in a control flow graph are result of condi-
tional execution of a block of commands, such as if branches or conditional
loops.

Presenting software as a control flow graph is interesting because it vi-
sualizes possible execution paths in the source code. Since the total number
of possible paths may be hard, impractical or even impossible to calculate,
McCabe introduced basic paths, a set of paths that can be used to construct
all other paths.

For any single connected graph, the cyclomatic number or circuit rank
represents the number of linearly independent cycles and is given with:

V (g) = e− n+ 1

where e is the number of edges and n is the number of nodes. For a more gen-
eral case, when a graph contains several connected components (i.e. islands
of connected nodes) the formula will have the following form:

V (g) = e− n+ p

where p is the number of connected components.
Assuming control flow graph has single entry and single exit node, control

flow graph becomes strongly connected (each node is reachable from every
other node) if we add single artificial directed edge from last to first
node. McCabe defines cyclomatic complexity of a program (module) as a
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cyclomatic number of a corresponding strongly connected graph calculated
with:

V (g) = e− n+ 2

or in general case with p connected components:

V (g) = e− n+ 2p

Figure 1: Example of a graph with 10 edges, 6 nodes, 6 regions and cyclomatic
complexity equal to 6 (source [48])

Connected components in a control flow graph represent individual func-
tions or subroutines of a program. Cyclomatic complexity may also be ap-
plied to individual functions, modules, methods or classes within a program.
It is frequently used as basis for testing methodology because cyclomatic
complexity defines minimal number of test cases needed to achieve complete
branch coverage (each possible branch of execution is exercised).

Properties of cyclomatic complexity:

• Always larger or equal to 1: V (G) ≤ 1

• It is maximum number of linearly independent paths in graph: it is the
size of basic set

• Inserting or deleting functional statement does not affect V(G)

• Graph has only one path if and only if v(G)=1

• Inserting a new edge increases v(G) by one

• v(G) depends only on the decision structure of G
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The number of edges and nodes is not trivial to calculate for larger source
codes, a simplification formula may be applied: v(G) = π + 1 where π is the
number of predicates (not conditions!) in the source code. Because of its
simplicity, this way of calculating cyclomatic complexity is probably the most
widely used. For visually presented strongly connected control flow graphs,
there is the additional simplification for calculating cyclomatic complexity
by counting the number of regions of that graph.

2.1.1 Cyclomatic complexity and modularization

Modularization of code assumes splitting a bigger block of code into smaller
units, typically through the use of subroutines. There are two main reasons
for modularization: abstraction and code reuse. When modularization is
done for the sake of abstraction, a logical, self-contained, part of processing
code is identified within a bigger block of code and factored out, hopefully by
using a name which clearly describes its functionality and follows all agreed
naming conventions. Modularization for the sake of code reuse is commonly
used to remove code duplication. Such modularization assumes one definition
and several usages of the created subroutine. Those two types of modulariza-
tion are fundamentally different from testing difficulty perspective. Modules
that are reused several times, cannot be considered as a separate component
each time they are called and need to be tested only once. This means that
reused modules should only add to the cyclomatic complexity once, not as
many times as they are used (called). However, this may not be the case if we
consider cyclomatic complexity in the context of a general software complex-
ity measure (or cognitive software complexity measure), since multiple calls
to the same subroutine may actually increase general software complexity.

Even if we observe cyclomatic complexity only as a testing difficulty mea-
sure (not as general or cognitive complexity measure) it may be calculated
in several different ways. McCabe’s paper [48] considers each component
(subroutine) of the program separately. As a consequence, each of those
components needs to be strongly connected (for each subroutine an artificial
edge from end to start node has to be added). On contrary to McCabe’s cy-
clomatic complexity which is focused on module (or unit) testing, Henderson-
Sellers metric [29], [66] is focused on the integration test paths. This means
it is interested in counting basic test paths of one big control flow graph and
not many smaller ones. The merging of modules into one big control flow
graph is achieved by the Henderson-Sellers splitting technique.

The graph on figure 2 is equal to the single graph from figure 3 when this
technique is applied: each node calling a subroutine is replaced by 2 nodes
(one for the entry in a subroutine and one for the exit) and 2 new edges
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Figure 2: Control flow graph as set of separate connected components (source
[29])

Figure 3: Control flow graph as single integrated connected graph obtained
by splitting technique of Henderson-Sellers (source [29])

are added (one for the entry and one for the exit from a subroutine). Now
we can apply the well-known McCabe’s formula for calculating cyclomatic
complexity of a single-component control flow graph : V (g) = e − n + 2.
The merging increases cyclomatic complexity by one (1=2-1) for each con-
nected component except for the one which we are merging into.
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VLI(G) = e′ − n′ + 2 = [e+ 2(p− 1)]− [n+ (p− 1)] + 2 = e− n+ p+ 1

where e’ and n’ respectively represent the number of edges and nodes
in a single, merged, control flow graph. This altered cyclomatic complexity
metric has different properties with regard to modularization and is much
more suitable for integration testing. The value of VLI(G) for the full program
is equal to the total number of decisions, D, plus one:

p∑
i=1

di + 1 = D + 1

The value of VLI(G) is unchanged when subroutines are merged back
into the program either by nesting or sequence (see figures 2 and 3). This
confirms the argument that the integration testing procedures are unchanged
by modularization.

Relationship between the whole and the sum of the parts is also different.
McCabe (1976) shows that V (G) =

∑
V (Gi) while Henderson-Sellers deduce

that:

VLI(G) =
∑

VLI(Gi)− (p− 1) =
p∑

i=1

(ei − ni + 2) + 1− p = e− n+ p+ 1

where e and n are the total number of edges and nodes, respectively.
To summarize, McCabe (V(G)) treats modules in programs essentially in-
dependently, while Henderson-Sellers (VLI(G)) retain an interpretation with
respect to testing paths both at the unit level and at the complete program
level.

Note that the last equation disregards modularization due code reuse by
counting only the number of components and not the number of times they
are called.

Multiple calls of a single subroutine do not add to the value of VLI(G)
since it does not introduce additional control flow paths. This is aligned with
the premise that testing difficulty should not be affected by multiple calls
to same subroutine. It should be noted that this cannot be extrapolated to
cognitive complexity or understandability: multiple calls for same subroutine
may make programs harder to understand and therefore more cognitively
complex.

2.1.2 Cyclomatic complexity for modules with multiple entry and/or
exit nodes

One of the main assumptions in calculation of cyclomatic complexity is that
each component has a single entry and a single exit node. Here we will
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consider cases where this assumption is not fulfilled and observe its effect on
cyclomatic complexity.

Multiple entries in a module represent module reuse mechanism. Thus,
equation VLI(G) =

∑
VLI(Gi) + 1 − p applies to multiple entry, single exit

(MESE) modules as well.

Figure 4: Handling single entry, multiple exit (SEME) modules when calcu-
lating cyclomatic complexity.

Generally, single entry multiple exit (SEME) nodes typically occur in
branches of if structures where an immediate return (”early exit”) to the
calling module occurs. One way to handle such cases is to add an additional
(virtual) node for each early end and connect it with virtual edges to early
and normal exit nodes. This means we need to add one for each exit point
(+1 = 2 new edges - 1 new node). So the formula is given with:

VLIseme(G) = e− n+ p+ 1 +
p−1∑
j=1

(rj − 1)

where rj is the number of exit points in the graph representation of j-
th module and there are p-1 such modules (subroutines). This means that
modules with multiple exit points increase complexity.
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In addition, multiple entry, multiple exit (MEME) modules can be treated
as modules with multiple exit points, and the previous equation applies.

2.1.3 A critique of cyclomatic complexity as a software metric

McCabe’s cyclomatic complexity is based on solid theoretical foundations
and is useful as a measure of software testing difficulty, but it can also be
considered as a general purpose software complexity measure or metric of
cognitive software complexity. In that case, cyclomatic complexity may be
criticised on several grounds [70].

First, there is an issue of compound predicates. We can choose either to
count predicates or individual conditions, but both alternatives may be too
simplistic. Myers [54] proposes a complexity interval which will have number
of predicates + 1 as the lower bound and the number of individual conditions
+ 1 as the upper bound.

The second issue of cyclomatic complexity is the failure to distinguish
between if and if/else constructs: they have the same cyclomatic complexity
because they have the same number of execution paths, the difference is only
that the alternative (”else”) path is explicitly stated. Third issue is handling
switch-case construct. Although it has the same cyclomatic complexity as
equivalent if construct, it is significantly simpler and should contribute to
complexity with logarithmic scale log2(n).

There is also an additional issue that cyclomatic complexity remains one
for any linear sequence of statements.

A more fundamental problem of cyclomatic complexity measure is the fact
that generally accepted techniques for modularization (splitting in
subroutines) effectively increases complexity because the number
of connected components (p in the equation) increases. The problem
is even more complicated with observation that graph complexity may be
reduced when modularization eliminates code duplication (when the same
subroutine is called more than once). Cyclomatic complexity is then given
with:

v(P ′) = v(P ) + i−
i∑

j=1

((vj − 1) ∗ (uj − 1))

where P is equivalent to P’ but with single connected component, i is
number of modules, vj is complexity of j-th module, and uj is number j-th
module is called.

This means that the complexity of program increases with modulariza-
tion, but decreases with factoring out duplicate code. This leads to conclusion
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that programs should only me modularized for the parts that are reusable,
but this is not acceptable guideline to reduce complexity.

Suleman [33] indicated an additional problem with the way how cyclo-
matic complexity handles nested control structures. Although they have the
same cyclomatic complexity as non nested (sequential) control structures,
nested counterparts have greater computational complexity. As far as testing
is concerned, this works fine, but when it comes to benchmarking the code,
this is not acceptable. There are existing solutions for nested if problems but
those cannot be applied to nested loops. Suleman proposes a solution to this
problem by adding total number of iterations of nested loop to cyclomatic
complexity:

V (G)∗ = V (G) +
n∏

i=1

Pi

where n is nesting depth (the number of nested loops) and P represents
the number of iterations in each loop. Problem with this approach is that
number of iterations does not need to be known in design time, only at
runtime. This makes the calculation of computational complexity hard. Also,
note that this formula works only if we have a single top-level loop.

In addition to theoretical objections, there are also some empirical ob-
jections related to cyclomatic complexity ass general software complexity
metric. The number of empirical studies have been carried out with different
interpretations: The problem is that there is no explicit hypothesis being
evaluated. Possible a posteriori hypothesis which can be used to examine
empirical work are:

1. Total program cyclomatic complexity can be used to predict various
software characteristics (such as development time, incidence of error
and program comprehension)

2. Programs with cyclomatic complexity lower than 10 are easier to test
and maintain than those where this is not the case (original McCabe’s
hypothesis)

Empirical data does not a give great deal of support for either of the hy-
pothesis. The clearest empirical result indicates strong relationship between
the number of lines of code (LOC) and cyclomatic complexity (CC). This is
not very good because one of the motivations for cyclomatic complexity is
inadequacy of LOC as complexity metric. However, there are many studies
that show that LOC actually outperforms CC.

A lot of empirical validations are done by measuring correlation with
Pearson’s product moment as a coefficient. That correlation gives a value
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between -1 and 1 where 0 indicates no correlation while -1 and 1 indicate
strong, negative or positive correlation. However, that coefficient requires
roughly normal distribution, which is particularly problematic when corre-
lating cyclomatic complexity and module error rates because it is impossible
to get negative error count and corresponding distribution is skewed.

Empirical validation is very often done in two scenarios: large uncon-
trolled and small controlled ones. Both have issues. Large scale empirical
validations have problem of not taking into account the individual ability
of single programmer. Small scale empirical validations are usually done
on small (trivial) program samples (up to 300 LOC) and do not take into
account programmer familiarity with the problem.

One might argue that a search for a general complexity metric based
upon program properties can be considered as a futile task, because of range
of programmers, programming environments, languages and tasks. A more
fruitful approach may be to derive a complexity metric from more abstract
notations and concepts of software design. This would have the additional
benefit that design metrics would be available earlier in the software devel-
opment process.

2.2 Halstead metric suite

In addition to McCabe’s cyclomatic complexity, another traditional set of
metrics, the Halstead metrics [26], are often used. Halstead metrics are
an attempt to establishing an empirical science of software development. He
realized that software metrics should reflect the implementation of algorithms
in different languages, but that they are independent of their execution.
Halstead metrics are computed statically from the code [78]. Halstead defines
following basic elements:

• n1: number of unique or distinct operators appearing in a program

• n2: number of unique or distinct operands

• n=n1+n2 represents vocabulary

• N1: total number of operators (implementation)

• N2: total number of operands (implementation)

• N=N1+N2: represents counted (implementation) length

From this basic element, several metrics is calculated. Program volume
(V) represents the information content of the program and is measured in
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bits:
V = N ∗ log2(n)

The program volumene is the actual size of a program in a computer if
a uniform binary encoding for the vocabulary is used [69], but Halstead
interpreted it as number of mental comparisons needed to write a program
of length N. Volume metric is based on the assumption that humans use
the binary search algorithm in selecting the next token from vocabulary of n
symbols.

Program difficulty (D) or error-proneness is based on simple cognitive
complexity theory that adding new operators and reusing old operands in-
creases difficulty of algorithm (program) understanding [52]. It is calculated
by using the equation:

D = (n1/2) ∗ (N2/n2)

Program effort is the mental effort required to implement or compre-
hend the algorithm, measured in elementary mental discriminations. For
each mental comparison (in volume, V), depending on difficulty (D), the
human mind needs to perform several elementary mental discriminations.
Therefore, effort is proportional to volume (V) and difficulty (D):

E = D ∗ V =
n1 ∗N2 ∗N

2n2

∗ log2(n)

One of the hypothesis of Halstead is that the length of well structured
algorithm (program) is dependant only on the number of unique operators
(n1) and operands (n2). He gave a formula for estimating program length
(N̂):

N̂ = η1 log2 η1 + η2 log2 η2

One of the more controversial Halstead’s metrics is time (T) required to
implement an algorithm (program). It is simply calculated by dividing effort
(E) with 18 and result represents the time in seconds. Number 18 in this
equation is considered as a Stroud number. This is based on weak and, from
current perspective, irrelevant psychological theory made by John Stroud,
that human beings are able to detect between 5 and 20 discrete events per
second [72].

Since these metrics are applicable to any program or language, it is im-
portant to clearly understand the rules for selection between operators and
operands. Initially Halstead metrics ignored variable declaration section from
calculation and were only applied to algorithms (not programs). Algorithms
were usually written in Algol and Fortran [69], so the distinction was rather
simple, but with more complex languages this may not be as simple as it
seems.
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2.2.1 Criticism and empirical validations of Halstead metrics

Although the theory behind the Halstead’s metrics is weak, the metrics have
been validated through a number of empirical studies. The first one, con-
ducted by Halstead himself [26], confirmed the validity of his metrics. How-
ever, those validations have been criticized on the following grounds:

• The sample size was too small and parametric statistic (Pearson cor-
relation coefficient) was used. Parametric statistics requires normal
distributions and it is very hard to show that data set below 30 sam-
ples follows normal distribution. Halstead frequently used sample size
less the 10.

• Most of the programs were very small, less then 50 lines of code

• Many experiments, especially ones involving time, contained only single
subjects. Unless the subject programmer was perfectly typical, we
cannot generalize the conclusion

• Subjects involved in experiments were mainly students and metrics may
not apply to professional programmers.

Shen [69] has shown that the length equation cannot be justified theo-
retically in the manner proposed by Halstead. However, there are empirical
evidences to suggest its validity, although it appears to work best in the range
of N between 2000 and 4000. In addition, published data do seem to sustain
the usefulness of the difficulty metric (D) as a measure of error-proneness.
Results also suggest that the software science effort (E) is at least as good
an effort measure as most others being used.

Basili [5] reports significant correlations between real and calculated effort
measured on large, real world software project written in FORTRAN. They
have analysed ground support software for satellites ranging from 50000 to
110000 LOC and having 200-500 modules.

Smith [71] summarizes findings of analysis of several large IBM products.
Analysis focuses on Halstead’s length (N) and volume (V) metrics in com-
parison to the traditional lines-of-code measure. It is shown that the size of
a program can be estimated with reasonable accuracy once the vocabulary
is known.

2.3 Data and information flow complexity metrics

Henry and Kafura [31] defined a set of software metrics based on the in-
formation flow between system components. This set includes metrics for
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procedure complexity, module complexity and module coupling. The follow-
ing information flow types are identified:

1. Global information flow between module A and B happens when there
is structure D in which module A writes and module B reads

2. Direct local flow from module A to B happens if A calls B

3. Indirect local flow from A to B happens if B calls A and A returns a
value which B later uses or in case when the third module C calls A
and B, passing output from A as a parameter into B

Metrics based on information flow are measuring simplicity of relations
between modules. For single procedure, Henry and Kafura defined fan-in
and fan-out as:

• Fan-in of a procedure is the number of local flows into the procedure
plus the number of data structures from which A retrieves information

• Fan-out of a procedure is the number of local flows from the procedure
plus number of data structures which procedure updates

Procedure complexity depends on two aspects: complexity of its internal
code and, complexity of procedure’s connections with its environment. With
the number of lines of code as measure of complexity of its internal code,
procedure complexity can be formalized as [31]:

length ∗ (fanin ∗ fanout)
2

Order of
complexity

Number of
procedures

Number of procedures
with changes

Percentage

0 17 2 12
1 38 12 32
2 41 19 46
3 27 19 70
4 26 15 58
5 12 11 92
6 3 2 67
7 1 0 0

Table 1: Relationship between procedure complexity to changes (taken from
[31])
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Fan-in and fan-out are lifted on the power of 2 because of the belief that
complexity is more than linearly dependant when it comes to connections to
its environment. If the effect of the number of lines of code (length) is esti-
mated or ignored, the metric can be calculated even before the implementa-
tion phase. This is important in order to achieve the design-measure-redesign
cycle instead of the usual design-implement-test-redesign cycle.

In the previous formula, the product of fanin and fanout represents total
number of input-output flow combinations, which is a result of a simplistic
assumption that each input of procedure affects each output. Detailed data-
flow analysis, similarly to the one typically done in compiler optimizations,
may be performed to improve this [13], [28], [61].

Analysis of the formula for procedure and module complexity may lead us
to some useful conclusions. Procedures with high fan-in and fan-out numbers
have many connections which might indicate that they perform more than
one task. In addition, such procedures are considered as stress points where
changes have many effects to the environment. Procedure complexities in a
module are summed to obtain module complexity. High module complexities
typically indicate improper modularizations. High global flows and low or
average module complexity indicate poor internal construction of modules.
In that case procedures directly access data structures, but there is little
communication between procedures. In the case of low global flows and
complicated module complexity, it is probable that functional decomposition
within module is poor or there is a complicated interface between modules.

An important aspect of any metric is that its calculations is completely
automated so it can easily be applied to large scale systems. Henry and
Kafura validated their metric set on the source code of the Unix operating
system (version 6.0) and found strong correlation (0.94) with occurrence
of changes (errors). Additionally, they noticed that most of the modules
complexity (85%) comes from three most complex procedures [31].

Unlike Henry and Kafura [31], Oviedo [61] did not assume that every
input of procedure affects every output variable. Inspired by compiler op-
timization techniques, he defined precise data flow complexity metric which
counted the number of all prior (re)definitions of all locally used variables.
Following text explains the metric in little bit more details using concepts:

• Variable definition appears as left side expression in assignment state-
ments or as input parameters of a subroutine.

• Variable reference typically appear in right side expression of assign-
ment, as part of predicates or is used in subroutine output statement
(i.e. ”return” statement).
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• Locally available variable (re)definition is (re)definition of the variable
within the block.

• Locally exposed variable reference is a variable that is used (referenced)
within a block, but is not (re)defined within it.

• Variable definition defined in block k is said to reach block i if it has
not been (re)defined along the path from block k to block i.

• Variable (re)definition in the block kills all previous definitions of that
variable that might reach the block.

Let Vi be set of locally exposed variables (set of variables used) in block i
and Ri be set of variable definitions reaching block i. Note that, for each vari-
able used (referenced) in block i there might be several definitions, depending
on the number of possible control paths leading to the block i.

Data flow complexity of block i is defined as the number of (re)definitions
reaching block i of all the variables used (i.e. referenced, locally exposed) in
that block, or formally:

DFi =
|Vi|∑
j=1

DF (vj)

where |Vi| is the number of variables used in block i and DF (vj) is num-
ber of definitions of variable vj reaching block i. Data flow complexity of
program body is then defined as sum of data flow complexities of all the
blocks in the program. Note that only inter-block data flows contribute to
the data flow complexity. Such definition is closely related to the ”all-uses”
test data selection criteria which requires that all definition-reference pairs
are exercised [63].

Oviedo’s data flow complexity metric is one of the first complexity metrics
that has focused on the complexity of data manipulation within a block
of processing code. That makes this metric context dependant, which is
a property not typically present among other complexity metrics. In its
nature, data flow complexity metric is orthogonal (at least theoretically) to
control-flow complexity described by McCabe’s cyclomatic complexity. The
combination of those two types of metrics is one of the ideas behind cognitive
complexity metrics which we will analyse in the next chapter.

2.4 Cognitive and psychological complexity metrics

Since software is the result of human creative activity, cognitive informat-
ics plays an important role in understanding its fundamental characteristics.

19



[68]. Many traditional complexity metrics, such as McCabe’s cyclomatic
complexity[48] and especially Halstead software science [26] actually targeted
measuring (among others) psychological complexity. Curtis et.al [15] gave
evidence that Halstead and McCabe software complexity metrics are related
to the difficulty programmers experienced in understanding and modifying
software. However, correlations are not as high as in Halstead’s study [26] in
which he verified his theory. Curtis also noticed that complexity of metrics
were more highly related to performance of less experienced programmers
and that they may not be suited for predicting performance of experienced
programmers. Recently, a new approach in measuring psychological (cogni-
tive) software complexity emerged.

Wang [75] stated that cognitive weight of software is difficulty expressed
as relative time (effort) for comprehending the given program. Most cognitive
metrics are based on basic control structures (BCS) which represent a set of
essential control flow mechanisms used to build logical software architecture.

• Sequence

• Branching: if-then-else

• Branching: switch-case

• Iteration (loops)

• Embedded component: Function call

• Embedded component: Recursion

• Concurrency: parallel execution

• Concurrency: interrupted execution

Basic control structures are assigned with cognitive weight based on the
axiom that time required to understand functionality and semantics of given
BCS is proportional to the cognitive complexity of BCS. This approach is
justified with the fact that relative effort (time or weight) of BCSs is statis-
tically stable, although it can vary from person to person [75].

There is no agreement on cognitive weights of different BCS and they vary
from author to author. After performing experimental results on 126 under-
graduate and graduate students of software engineering, Wang [75] came
with his relative weights. Gruhn [24] summarizes cognitive weights found in
literature indicating that current weights for BCSs are not yet satisfying.

Whatever cognitive weights of BCS are, there is an additional problem
of their combination when calculating cognitive weight of complete software.
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BCS
Wang’s cog-
nitive weight
[75]

Shao’s cognitive
weight [68]

1 Sequence 1 1

2 Branching: if-then-else 3 2

3 Branching: switch-case 4 3

4 Iteration: ”for” loop 7 3

5
Iteration: ”repeat-until”
loop

7 3

6 Iteration: ”while” loop 8 3

7
Embedded component:
Function call

7 2

8
Embedded component: Re-
cursion

11 3

9
Concurrency: parallel exe-
cution

15 4

10
Concurrency: interrupted
execution

22 4

Table 2: Comparison of different BCS cognitive weights (taken from [24])

The simplest way is just to sum the cognitive weights of all other control
structures in all the software components (methods)[74]. However, basic
control structures can be combined in sequence or nested in a tree which
may the affect overall cognitive complexity [68]. Taking into account this
idea, the following rule can be implied: for BCSs in sequence, simply sum
their weights, for nested BCSs, multiply their weights. In the general case,
the total cognitive weight of a software component having q linear blocks of
code, each of them having m nested layers and each layer having n individual
BCS in sequence is defined with [68]:

Wc =
q∑

j=1

[
m∏
k=1

n∑
i=1

Wc(j, k, i)]

Although Misra [51] considered that the formula satisfies the calculation
of complete cognitive complexity of software, other authors [68] [74] consid-
ered it only as the operational part of the overall complexity. They indicated
a need to consider architectural (structural, data) complexity as well.

Initially Shao and Wang[68] defined cognitive functional size (CFS)
metric of a single method (component) as the product of total weighted
cognitive complexity(Wc) and the number of it’s inputs (Ni) and outputs
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(No):

Sf = f(Wc, Ni, No) = (Ni +N0) ∗Wc

For a complex component consisting of n methods, cognitive function size
is then calculated with:

Sftotal =
n∑

j=1

Sf (j)

In a similar manner, the complexity of a system of components is calcu-
lated as the sum of complexities of all components. Unit of cognitive weight
(CWU) used for cognitive function size (CFS) is the complexity of a sin-
gle method having one input/output and consisting of a single sequential
operation.

Later, Wang [74] has made modifications to his approach, by simplify-
ing the calculation of operational complexity and extending the architectural
part by adding complexity introduced by internal data handling of the meth-
ods. Operational complexity is simplified in a way that it does not take into
account the nesting of the basic control structures, but instead, more com-
plex control structures now have significantly higher weights (see Table 2).
This cognitive complexity metric is simply called cognitive complexity of
system S and is calculated using the following formula:

Cc(S) = Cop(S) ∗ Ca(S) =
n∑

k=1

m∑
i=1

w(k, i) ∗ [
g∑

j=1

Oglob +
v∑

l=1

Oloc]

where n is the number of components, m the number of methods, g is
the number of global variables and v is the number of local variables used in
the system. Wang considered operational and architectural (data) complexi-
ties as orthogonal dimensions of the overall software complexity and defined
the semantic space of programs as a Cartesian product of program variables
and all execution steps of a program (see Figure 5). The unit of opera-
tional complexity is defined with the simplest function of the system, one
sequential operation, indicated with F. The unit of architectural complexity
is considered one object onto which function is applied. Consequently, the
unit of cognitive complexity is one function-object (FO) which is complexity
of simplest system that performs single function onto single object.

2.5 Entropy-based complexity metrics

Several authors [1], [27] [40] considered software as an information source
and computed software complexity as some variation of classical Shannon
entropy [67] of the source code:
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Figure 5: Semantic space of a program (source [74])

Hn(p) = −
n∑

k=1

pklog2pk =
n∑

k=1

pklog2(1/pk)

where pk ≥ 0(k = 0, 1, 2, 3...n) and
∑n

k=1 pk = 1, n is the number of sym-
bols (events), and pk is the probability of k-th symbol. The main issue with
this entropy complexity metrics is the selection of symbols. Once defined,
their probabilities are calculated by counting their appearance in the source
code. Abd-El-Hafiz [1] counted only function/method calls, while Harrison
[27] additionally counted reserved words and special symbols.

Regarding the validation of entropy-based metrics, some authors reported
[1] meaningful and intuitive results which correspond to subjective measure
of source code complexity. Others [27] took a more rigorous approach and
performed empirical validation on real industrial software which indicated
significant correlation (0.92 and 0.73 in repeated experiment) between en-
tropy complexity metric and average error-span (average number of tokens
per error).

Kim et. al. [40] took a somewhat different approach. They constructed
intra- and inter- class dependency graphs built from object oriented software
and used entropy-based approach for calculating complexity. For each class,
they defined a Data and Function Relationship (DFR) graph that represents
dependencies between data and function members of a class and between
function members as well. They represent each data and function member
as a node, using weights on arcs to denote the number of times a data member
is read or written, or, in the case of a function, how many times it has been

23



called or how many times it calls other functions. The symbols used in
entropy calculations are nodes in the graph. The probability of each symbol
(node) required for entropy function is calculated as the division of the sum
of node weights (on all incoming and outgoing arcs) and duplicated sum of
all weights in the graph (because each weight is counted twice, for originating
and terminating node)

Figure 6: DFR graph of example source code(source [40])

Figure 7: Example source code(source [40])

In similar way, the inter-object graph, called Object Relationship (OR),
is constructed, with nodes being classes, arcs being messages between them,
and weights being the number of times a given message is called from the orig-
inating class. Weights in that graph are then used to calculate intra-object
entropy representing intra-class complexity of software. Total complexity of
software is then calculated as the sum of intra- and inter-object entropy of
all the classes in the software.
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Kim verified the metrics theoretically against Weyuker’s properties [77]
resulting in only 2 of them (5 and 7) not being satisfied. Regarding empir-
ical validation, authors report significant correlation (0.9047 and 0.8750 re-
spectively) between (intra-)class complexity and Weighted Methods per Class
(WMC) and Lack of Cohesion In Methods (LCOM) [12]. For inter-class com-
plexity, they measured correlation with Response For a Class (RFC) and
Coupling Between Objects (CBO)[12] also resulting in significant correlations
(0.8735 and 0.8950, respectively).

2.6 Theoretical evaluation of software complexity met-
rics

Over the last few decades, plenty of software complexity metrics have been
proposed. As s consequence, the question of their validation emerged.

Kearney et. al. [37] indicated several problems with software complex-
ity metrics and proposed some guidelines for their creation and validation.
First, they indicated that a metric should always be made with clear and
specific goal and anticipated usage in mind. Before a metric is developed, a
specification of what will be measured, and why, should be stated. A rela-
tion between practical usage and desired metric goal of a metric should be
confirmed by underlying theory. For example, if index of program compre-
hension is wanted, more details about the human understanding of programs
should be studied. If index of errors is wanted, causes of errors must be
determined. In addition, authors state that a metric should not only index
the level of complexity but also suggest a method for its reduction. A norm
that identifies acceptable complexity level should also be specified.

An empirical validation presents a natural way to validate the new metric,
however, designing and performing quality experiment is not a trivial task.
Problems with metric experiment validation is primarily the large number
of factors that can influence the outcome of an experiment. These typically
include subject, language and task selection problems. The danger of exper-
iments is that the results are easily misinterpreted. In case the large number
of experimental conditions is examined, the likelihood of finding accidental
relationship is high. As a consequence, type 1 errors happen: inferring the
existence of non-existent relationship. Even if high correlation is found, with-
out understanding underlying process that lead to the relations, it is difficult
to know how to use the result to an advantage.

In order to perform the initial metric assessment, researchers usually use
theoretical evaluations, which are much more practical and easier to perform.
One of the most popular and widely used theoretical evaluations of software
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complexity metrics is the one proposed by Weyuker [77].
She defined 9 evaluation criteria for software complexity and evaluated 4

most important complexity metric (at the time) using those criteria: lines of
code (LOC), Halstead effort [26] , McCabe cyclomatic complexity [48] and
Oviedo’s data flow complexity [61]. Those 9 desirable properties of software
complexity metric are:

• Property 1 (Nonuniformity): Metric should not assign same com-
plexity to all programs because then it is not a metric at all

(∃P )(∃Q)(|P | 6= |Q|

• Property 2 (Fine granularity): Complexity metric is not ”sensitive”
enough if it categorizes programs in only few complexity values. There
should be only finitely programs with complexity c, where c is non-
negative number.

• Property 3 (Coarse granularity): Exactly the opposite of second
property, a metric should not be of too fine granularity. There should
exist two distinct programs with same complexity

(∃P )(∃Q)(|P | = |Q|)

• Property 4 (Implementation dependence): Complexity of a soft-
ware metric should measure complexity of implementation, not the
functionality performed by the software. This means that the com-
plexity metric should depend on syntactic features of program not its
semantic. In another words, equivalent programs (performing same
functionality) do not necessarily have same complexity.

(∃P )(∃Q)(P ≡ Qand|P | 6= |Q|)

• Property 5 (Monotonicity): Components (parts) of a program can-
not be more complex then the whole program. This is one of the central
properties of any syntactic software complexity metric.

(∀P )(∀Q)(|P | ≤ |P ;Q|and|Q| ≤ |P ;Q|)

• Property 6 (Interaction sensitivity, context dependence): Two
components of a program result in different complexities depending
on how they interact with each other. This metric is frequently not
satisfied by complexity metrics.

(∃P )(∃Q)(∃R)(|P | = |Q|and|P ;R| 6= |Q;R|)
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• Property 7 (Permutation sensitivity): Two programs which have
same statements but in different order should not necessarily have same
complexity. Order of statements should affect complexity.

• Property 8 (Renaming): If program P is ”renaming” of Q then they
have same complexity. Naming conventions used in program should not
affect its complexity. Weyuker explicitly stated that this rule does not
apply for metrics evaluating cognitive (psychological) complexity.

• Property 9 (Increasing growth): There should be cases when con-
catenation of two components is more complex then sum of complex-
ities of components individually. This property is stronger alteration
of property 5. The metric should allow that potential interactions be-
tween programs might add to overall complexity of their composition:

(∃P )(∃Q)(|P |+ |Q| < |P ;Q|)

• Property 9b (stronger version): Concatenation of two components
should always (not only in some cases) be more complex then sum of
complexities of components individually.

(∀P )(∀Q)(|P |+ |Q| ≤ |P ;Q|)

Property
number

LOC
McCabe
[48]

Halstead
Effort [26]

Oviedo Data
Flow [61]

1 YES YES YES YES
2 YES NO YES YES
3 YES YES YES YES
4 YES YES YES YES
5 YES YES NO NO
6 NO NO YES YES
7 NO NO NO YES
8 YES YES YES YES
9 NO NO YES YES

Table 3: Comparison of properties for 4 well known complexity metrics( [77])

Although widely used for theoretical metric validations, Weyuker’s eval-
uation properties are not without criticism. Cherniavsky and Smith [11]
constructed a metric which satisfies all 9 Weyukers complexity properties
but should should be viewed sceptically as metric any type of complexity.
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They stress that Weyuker’s properties present necessary but not sufficient
condition for software metrics and should be taken carefully and intelligently.
They also indicate that Weyuker properties apply only on traditional pro-
gramming languages and that new (or adapted) set of rules should be found
for object oriented languages.

Maneely et.al. [50] gave summary of metric validation criteria found in
literature and provide practical guide for researchers working on new soft-
ware metrics. They found total 47 unique validation criteria and performed
analysis to explore relationships among them. They also identified 11 pos-
sible advantages of the validation metrics and associated validation criteria
to their advantages. Starting with clear use of the metric, a researcher can
decide which advantages are relevanr, and then choose validation criteria for
the new metric.

2.7 Empirical evaluations of software complexity met-
rics

2.7.1 Dimensionality of software metrics

Many authors noticed relatively high correlations between software complex-
ity metrics. This rose the question of their interdependence and dimensional-
ity of software complexity. One of the first studies on this topic is performed
by Henry et.al [32]. They studied relationship (correlation) between three
metrics (McCabe cyclomatic complexity [48], Halstead’s effort [26] and Henry
and Kafura’s information flow [31]) on 165 methods in UNIX operating sys-
tem. They also studied correlation of those metrics to errors.

The study showed that Halstead and McCabe metrics are highly cor-
related (0.84) to each other but relatively weakly to the information flow
(0.38 and 0.35 respectively) which is therefore considered as an orthogonal
metric. Regarding correlations to the error count, all metrics showed high
correlations, information flow having 0.95, McCabe 0.96 and Halstead effort
0.89.

Considering obvious orthogonality of the metrics, authors also proposed
usage of McCabe and Halstead metrics on intra-module level, while using
information flow on inter-module level

Another study on dimensionality among metrics is performed by Munson
and Khoshgoftaar [53] [39] also noticed high correlations between software
complexity metrics which suggests existence of hidden common dimensions
to those metrics. In order to find those dimensions, they performed factor
analysis of five empirical studies dealing with software complexity metrics
[42], [17], [34], [64], [30].
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Figure 8: Factors imputed from five different studies ([53])
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Five studies analysed are completely independent of each other and no
direct statistical inference can be made. However, although true underlying
dimensions cannot be determined directly, results indicate that software com-
plexity domain is not unrestricted and that there are underlying dimensions
that can generally be used to describe complexity of any software. Those
imputed orthogonal factors are Control, Volume, Action, Effort and
Modularity. The control dimension is related to metrics measuring con-
trol flow complexity or difficulty. Unifying theme for metrics in the action
group is unique and total number of operands (Halstead n2 and N2). Vol-
ume dimension is typically associated with metrics depending on size or item
count perspective of complexity. Mental effort dimension grouped metrics
that depend on multiplicative effect of interaction of program operators and
operands. The modularity dimension is mostly affected by number of call
statements indicating level software is modularized. Identification of those
factors actually reduced dimensionality of software complexity where each
of complexity metric maps onto at least one factor dimension. Existence of
complexity dimensions, clearly indicates that it is possible to construct sin-
gle measure of absolute complexity of software systems that can be used for
comparison of any two programs.

Figure 9: Correlation between 18 metrics in FORTRAN programs

Li [42] performed empirical study on 31 metrics which are categorized in
3 different types: metrics that measure size (volume) of the software, met-
rics that measure usage, visibility and interaction of data within a program
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and metric that measure control organization within that program. Experi-
ment was applied to 255 student assignment FORTRAN programs. Results
confirm high correlation between all metrics. In general, measures based
on program size have been the most successful in predicting maintenance
costs. Many volume metrics have similar performance, while some control
metrics surprisingly correlate well with typical volume metrics.Li indicated
incomletness of most of these metrics and proposed a flexible class of metrics
combining volume and control.

In addition to volume, control and data complexity, Banker [80] indi-
cated modularity as independent dimension of software complexity. He
also stressed the fact that most of the metrics are affected by program size
which calls for metrics that are normalized for size. Banker assumed orga-
nization of software system as collection of programs which are then divided
into modules (sub-programs). He proposed five metrics for such software
system: Program size as average number of LOC; modularity measured
at module level as an average number of statements per sub-program, de-
cision structure complexity measured at statement level as proportion
of IF statements in program, and program decomposability measure at
statement level by the portion of GOTO statements within a program. Ad-
ditional fifth metric is also introduced to measure total size of application
system.

2.7.2 Effect of software complexity on software maintenance pro-
cess

Several research studies focused on the relation between software complexity
and software maintenance process. There are several underlying theories used
to justify this relation. Each of those theories is addressing complexity effect
on maintenance effort in different phase of software development process.
The first hypothesis assumes effect of complexity on correctness of the initial
implementation. The second one assumes effect of complexity on testing
difficulty. The third hypothesis accounts the effect of complexity on cognitive
effort required for understanding the software during maintenance process.

Gill [38] indicated a need to improve software maintenance process be-
cause 40-75% of all software efforts are spent on maintenance[73]. He used
modified McCabe cyclomatic complexity metric which was normalized by
size (measured in number of lines of code) obtaining cyclomatic complexity
density. The main research question was whether or not cyclomatic com-
plexity effect maintainable productivity and empirical test was performed.
Although data set was small (only 7) results indicated that cyclomatic com-
plexity density can be used as predictor of software maintainability.
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Curtis [15] compared effect of three complexity metrics (Halstead effort
[26] , McCabe [48] and length) to programmer performance on two soft-
ware maintenance tasks. Understanding task required students to recall the
statements of the algorithm. The number of correctly recalled statements is
counted as measure. The second maintenance task was to accurately imple-
ment modification to the algorithm. Both, the accuracy and the time required
to accomplish the task is measured. In the first experiment, a correlation be-
tween the percent of statement correctly recalled and complexity metric is
found. All correlations are found to be negative. Length and McCabe are
moderately correlated (-0.61 and -0.55 respectively) with performance while
Halstead effort has little relationship with performance (-0.36). In the sec-
ond experiment, a correlation between the effort, cyclomatic complexity and
length metric and accuracy of modification was relatively low (-0.34, -0.35
and -0.37 respectively). Correlation between the metrics and the time re-
quired to implement the modification was somewhat higher but still not sig-
nificant (0.47, 0.55 and 0.55 respectively). This study provided the evidence
that software complexity metrics are related to the difficulty programmers
experience in understanding and modifying software, but correlations are not
as high as in the initial Halstead’s study [26]. Curtis also stressed that com-
plexity metrics were more highly related to performance of less experienced
programmers, and that they cannot be applied for estimating performance
of professional programmers.

A more recent study [79] used complexity based method for predicting
defect-prone components. Three code-level complexity measures were used
as input (McCabe cyclomatic complexity [48], Halstead effort [26] and LOC)
of 12 different classification models in order to classify component as defective
or not. Results of the study indicate that static code complexity measures
can be useful indicators of component quality. Another benefit of the study
is that the number of metrics required is much less than number required by
other defect prediction models. Prediction model is tested on NASA dataset
with satisfactory accuracy. Authors also indicate that same methodology
cannot be applied on functions because only 4.4% of total functions is found
to be defective. This imbalance in class distribution makes classification
learning hard.

2.7.3 Practical applicability of metrics

De Silva et. al. [silva2012 ] indicated lack of studies comparing practical
applicability of metrics. They compared McCabe cyclomatic complexity [48],
Halstead volume metric [26] and Shao and Wang’s cognitive functional size
[68]. The study is done on 10 freely available Java programs. First, Java
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programs are ranked according to their complexity by 30 programmers and
then an average rank is calculated for each of the programs. Then, all three
metrics are calculated for each of the programs and a correlation is calculated
between expert’s ranking and ranking according to the metrics. Results show
that McCabe complexity has lowest correlation of 0.752, Halstead metric has
correlation of 0.851 and Sho and Wang’s CFS metric has highest correlation
of 0.863. They conclude that Cognitive functional size (CFS) is the most
suitable complexity metric to be used in real world.

In his later study, De Silva concentrated on cognitive complexity met-
rics[16]. In that study 3 cognitive complexity metrics are compared: Cogni-
tive Functional Size (CFS) [68], Cognitive Information Complexity Measure
(CICM) [41] and Cognitive Weight Complexity Measure (CWCM) [51]. Simi-
larly as in previous study De Silva conducted study of 10 freely available Java
programs and used 30 experienced programmers to rank them by complex-
ity. Their ranking is then compared with rankings calculated using all 3
cognitive complexities. Results show that CFS has greatest correlation of
0.903 indicating it as the best suitable cognitive complexity measure. The
two other cognitive metrics used showed significantly lower correlation to
expert’s ranking (CWCM 0.503, CICM 0.588).
Correlation of 3 cognitive complexity metrics with experts ranking:
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3 Complexity of UML models

Except processing code used for specifying actions, executable UML models
typically use one or more abstraction levels that are expressed visually, using
the same or simplified syntax as the traditional UML models. This typically
includes class models, state-machine models and component models. The
most of the complexity metrics applied to the traditional UML models can
be applied to the executable models as well. This chapter will investigate
existing class, state and component model metrics.

3.1 Class model complexity metrics

Class models are the most popular and the most widely used UML models.
They are used for conceptual modelling as well as for detailed specification of
software implementation objects. Class models became popular with object-
oriented (OO) programming languages as an appropriate way for visualizing
static structure of the OO programs. Object oriented software and class
models are closely related in the sense that most object oriented metrics are
actually class model metrics and can be applied directly.

3.1.1 Chidamber and Kemerer’s metrics

Chidamber and Kemerer [12] have developed a suite of object-oriented met-
rics. Their key contribution is the theoretical development and empirical
validation of a set of metrics that can be applied to OO software. Since
the focus of object-oriented software is class design (model), most of these
metrics are applied on classes. This implies limitations that these metrics do
not capture, possible dynamic behaviour of a system.

The theoretical validation of the proposed metrics is done by using the
9 Weyuker’s metric properties [77]. Although not without criticism [11],
these properties provide necessary (but not sufficient) conditions for good
complexity metrics. Empirical validation and analysis of metrics is done at
two sites on source code of large real-world applications written in Smalltalk
and C++.

The first metric proposed by Chidamber and Kemerer is Weighted Meth-
ods Per Class (WMC). It is defined as the sum of complexities of all meth-
ods in a class. If we consider that all methods have complexity equal to 1
(which is typically done), then WMC is equal to the number of methods.
This metric can be used as a predictor of time and effort required to develop
and maintain a class. Additionally, a large number of methods in a class
indicates that sub-classing of a class will have a large impact on child classes
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since they inherit all the methods from the parents. This may also indicate
that a class is more application specific which limits its possibility for reuse.

The second metric, Depth of Inheritance(DIR), presents the length
(in the number of hops) from the class to the root of the inheritance tree. If
there are multiple inheritance involved, the biggest number is taken. Authors
find several interesting viewpoints for this metric. First they indicate that
deeper a class is in a hierarchy, the greater the number of methods it is likely
to inherit, thus making it more complex to predict class behaviour. Also
they notice that deeper trees indicate greater design complexity since more
methods and classes are involved. Finally, they state that deeper the class is
in hierarchy, there is greater potential for reuse of inherited methods.

The third metric, Number of Children (NOC), presents the number
of immediate subclasses of a given class. Since inheritance is form of a reuse,
greater the number of children, greater the reuse. Also, if a class has a large
number of children, it may be a case of misuse of sub-classing.

The fourth metric, Coupling Between Objects (CBO) represents the
number of other classes the given class is coupled to. A class is coupled to
another class, if it uses its (instance) methods or attributes. Excessive cou-
pling of classes prevents reuse and breaks modular design principles. Higher
CBO metric of a class indicates sensitivity to other parts of the design which
makes maintenance of a class more difficult. Coupling metric may also be
used to predict effort required to tests certain parts of the design. The higher
the coupling, the more rigorous testing needs to be performed.

The fifth metric, Response For a Class (RFC) is defined as the num-
ber of methods (defined outside of the studied class) that are called from the
given class. This metric is a measure of communication between the given
class and all other classes. If a large number of methods can be invoked as a
result of invocation of a method of a given class, the testing and debugging
of a class becomes more complicated because it requires greater level of un-
derstanding from the tester. For this reason this metric may be involved in
testing effort estimation. Larger RFC values of a class, in general, indicates
larger complexity of a class.

The sixth metric, Lack of Cohesion in Methods (LCOM) is defined as
the difference between the count of method pairs whose similarity is zero and
the count of method pairs whose similarity is not zero. The similarity of two
methods of a class is determined by the number of instance attributes (of that
class) used by both methods. The larger the number of similar methods, the
more cohesive the class is. Methods in a highly cohesive class operate on the
same set of instance attributes. In case there are more similar method pairs
than those that are not, LCOM is declared zero. Cohesiveness of methods
within a class is desirable. A lack of cohesion in a class indicates that a class
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should be split into two or more subclasses because there is disparateness in
functionality provided by the class. Also, low cohesion indicates increased
complexity, which results in increased likelihood of errors.

Regarding the theoretical evaluation of metrics using Weyuker’s proper-
ties, most of the properties are satisfied. However, Weyukers’s ninth property
stating that interaction should increase complexity is not satisfied for any of
the metrics. When applied to classes, Weyuker’s ninth property states that
when two classes are merged into single class, complexity should increase
because of possible interactions between two classes. Failing to satisfy this
property, metrics actually indicate that merging two classes into a single one
could reduce complexity. Authors do not find this as an essential problem of
OO software design.

3.1.2 Li and Henry’s metrics

Li and Henry [43] proposed a set of object-oriented metrics that can be used
for estimating maintainability effort. They created a regression model and
validated their metrics on two commercial systems showing strong relation-
ship to maintenance effort. They have introduced the following metrics: i)
Message Passing Coupling (MPC), ii) Data Abstraction Coupling (DAC) and
iii) Number of Local Methods (NOM).

Message Passing Coupling (MPC) metric is defined as the number
of send statements defined in the class, where messages may be sent syn-
chronously or asynchronously. Another type of coupling measure they iden-
tified is Data Abstraction Coupling (DAC) which counts the number of
attributes within a class that have another class as their attribute. They
also introduced the Number of Local Methods (NOM) as a metric of
understandability. Finally, they introduced a new size metric, which counts
the number of properties of a class, including attributes and local methods.

Li and Henry analysed effect of size metrics on maintenance effort by cre-
ating and comparing the two regression models. The first one included only
size metrics, while the other one included all metrics. The conclusion is that
the size metrics account for a large portion of variance in the maintenance
effort, but prediction can be significantly improved by using all the metrics.

3.1.3 Briand’s metrics

Another study on class design metrics was performed by Briand et. al [9].
They measured the coupling between classes in C++ but their metrics can
be easily tailored to other OO languages. The metrics distinguish among the
class relationships, different types of interactions, and the locus of the impact
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of the interaction. The acronyms for the measures indicate what interactions
are counted. The first two letters indicate the type of coupling which may be
coupling to ancestor classes (A), descendants (D), friend classes (F), invert
friend coupling (IF) or other (O). The next two letters indicate the type of
interaction between classes which may be class-attribute (CA) interaction,
class-method (CM) interaction or method-method (MM) interaction. The
last two letters indicate whether a class in an interaction is using other class
(import coupling, IC) or is being used by other classes (export coupling, EC).
Hypotheses stated by Briand et.al. in this study are:

• H1: The higher the export coupling of class C, the greater the impact
of a c change to C to another classes. Many classes depend on the
design of the class C and thus there is greater likelihood that a failure
is tracked back to the class C.

• H2: The higher the import coupling of the class C, the greater the
impact of a change on another classes on the class C itself. Thus, class
C depends on many other classes and understandability of class C may
be more difficult. This makes class C more fault-prone.

• H3: Coupling based on friendship between classes 1 is in general likely
to increase the likeliehood of fault even more then other types of cou-
pling since friendship violates modularity in OO design.

Authors performed empirical validation showing that some of those met-
rics can be used as significant predictors of fault detection and that those
metrics are complementary to Chidamber and Kemerer’s metrics [12]. The
two friend-based coupling metrics 2 showed the greatest relation to proba-
bility of fault detection which supports the hypothesis 3. Other then friend-
based coupling metrics, 3 metrics dealing with import coupling from other
classes3 showed significant relation to probability of fault detection which
supports hypothesis 2. Finally, 2 metrics dealing with export coupling to
other classes 4 showed to be significantly related to fault-proneness as well,
supporting the first hypothesis.

1In C++, friend classes have access to private and protected members of the given class
2IFMMIC (Inverse Friend, Method-Method, Import Coupling) and FMMEC (Friend,

Method-Method, Export Coupling)
3OCAIC(Other type, Class-Attribute, Import coupling), OCMIC (Other type, Class-

Method, Import Coupling) and OMMIC (Other type, Method-Method, Import Coupling)
4OMMEC(Other type, Method-Method, Export Coupling), OCMEC(Other type,

Class-Method, Export Coupling)
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3.1.4 Genero’s metrics

Genero et.al. [23] [20] [21] studied early indicators of UML class model qual-
ity in the sense of understandability and modifiability. They performed an
empirical study in order to determine which UML class model metrics have
the greatest effect and which metrics do not affect the quality of a class
model. By their findings, the metric that have the most impact on the main-
tainability of the class model are (i) the number of methods (NM), (ii) the
number of attributes (NA), (iii) the number of generalizations (NGen), (iv)
the number of dependencies (NDep), (v) the maximum depth of inheritance
tree (MaxDIT ) and (vi) the maximum height of the aggregation hierarchies
(MaxHAgg). The metrics that do not have an impact on the maintainability
are (i) the number of classes (NC), (ii) the number of associations (NAssoc),
(iii) the number of aggregation hierarchies (NAggH) and, (iv) the number
of generalization hierarchies (NGenH).

3.1.5 Empirical validations of class model metrics

Except empirical validations usually performed by the authors themselves,
several independent empirical studies have been performed to validate dif-
ferent metric sets. Genero et. al. [22] gave a detailed summary about UML
class model metrics, their goals and evaluations. The most attention is given
to the metrics proposed by Chidamber and Kemerer (CK) [12] and by Briand
[9].

Basili et.al. [4] performed an experiment on 8 medium sized systems
implemented in C++ in attempt to use CK metrics as predictors of fault-
prone classes. They concluded that metric suite is well suited for the task.
The only metric that can be considered as insignificant in this context is
Chidamber and Kemerer’s Lack of Cohesion Methods (LCOM).

Khaled [18] focused at CK and Briand’s metric suite and gave cognitive
theory that relates object-oriented metrics and fault-proneness. They also
claim that the most important metrics to be measured are different types of
export and import coupling.

Prechelt et.al. [62] performed two controlled experiments in which they
compared the performance on code maintenance tasks for three equivalent
programs with 0, 3 and 5 levels of inheritances. The conclusion is that higher
inheritance (DIT metric) requires higher understanding effort.
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3.2 State machine model complexity metrics

State machine models are typically used to describe discrete event-driven
behaviours of the software [55]. Since they focus on behaviour instead on
object structure, state machine models are significantly less used in practice
and, consequently, much less interesting to researchers.

Syntactically, we differentiate between two main types of state machines,
flat and hierarchical. The main difference is that hierarchical state machines
allow existence of composite states (sometimes called superstates) which are
logical collections of sub-states, while flat state machines allow only simple
states without any sub-states. A state defines a situation in which some
invariant condition holds. States are often abstracted with some meaning-
ful names, representing stages in the life-cycle of an entity which they are
associated to. A transition represents a path from one state to another. Tran-
sitions are usually triggered by some events which represent any observable
occurrence. States and transitions may have associated actions specifying
processing to be done. There are state entry-actions executed when the state
in entered, state action which is executed while in state and exit-actions
executed when leaving the state. Transitions may have guards associated,
which are boolean expressions enabling fine-grained control whether or not
a transition will will be actually taken. Such transitions are called complex
transitions. This chapter presents the state-of-the-art in state machine
complexity metrics.

3.2.1 State machine structural complexity metrics

A set of basic state machine metrics identified by Genero[46] and Jose [14]
[36] are (i) the number of entry actions (NEntryA), (ii) the number of exit
actions (NExitA), (iii) the number of activities (NA), (iv) the number of
simple states (NSS), (v) the number of composite states (NCS), (vi) the
number of events (NE), (vii) the number of guards (NG), (viii) McCabe’s
cyclomatic number (CC), (ix) the number of transitions (NT), (x) the number
of complex transitions (NCT), (xi) the number of composite states (NCS)
and (xii) the number of actions associated to transitions (NIA).

Genero [46] performed theoretical and empirical validation of UML state
machine metrics with respect to their capability of being used as understand-
ability indicators. Understandability is identified as a key external quality
attribute since it affects several other quality characteristics, among others,
maintainability [19]. Theoretical validation is done by using a property based
framework proposed by Briand et. al. [8]. Regarding empirical validation,
an experiment is performed in which a correlation with understandability
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time is calculated for each of the metrics. Results show that NA, NSS, NG
and NT are highly correlated with understandability time.

Similar experiment is done by Cruz et.al. [14] who studied the impact
of structural complexity on the understandability of state machine diagrams
and performed repeated experiments to validate the metrics. As it was clear
that there will be a large degree of correlations between structural metrics,
Cruz performed principal component analysis (PCA) [35] to find underlying
orthogonal dimensions of structural complexity and to reduce the number of
metrics. According to their effect, metrics are then grouped into one of the
3 principal components:

• Simple states features (SSF) comprising of NSS, NE, NG, NT and
CC metrics

• Activities Within States (AWS) comprising NEntryA and NExitA
metrics

• Number of Activities (NA) is dimension represented by single met-
ric of the same name

They also build a regression model that corroborated the hypothesis that
structural complexity principal components influence understandability time
and efficiency (defined as correctness/understandability time ratio).

3.2.2 Measuring complexity of hierarchical state machines

The study performed by Hall [25] was focused on hierarchical state machines
and calculation of their cyclomatic complexity. The first approach presented
in this study was to calculate cyclomatic complexity by ignoring superstates
[46]. This complexity is called structural cyclomatic complexity (SCC). A
completely opposite approach is taken when calculating top-level cyclomatic
complexity (TLCC) of a state machine where only top level composite states
are taken into account. Finally, the combination of these approaches (HCC)
is possible by adding the cyclomatic complexity of each layer in a hierarchy
with its own weight, where each layer weight is inversely proportional to the
depth of the layer in the hierarchy (weight = 1/n, where n represents the
depth of state machine layer)

In a study performed by Jose [36], effect of composite (nesting) states
on understandability of state machines is analysed. After performing several
experiments, he concluded that the level of nesting has a negative effect
on understandability and that flat state machines should be preferred over
hierarchical ones.
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3.2.3 State machine cohesion and coupling metrics

Jung [3] had somewhat different approach to the measurement of state ma-
chine understandability. He considered metrics proposed by Genero and Jose
[46] [14] [36] merely as structural complexity metrics which have only limited
effect on the overall state machine understandability. More precisely, Jung
argues that there are situations in which structurally simpler state machines
are harder to understand than state machines which are structurally more
complex. His research focused on cohesiveness and coupling metrics of state
machines by observing the level of ”overlapping” between state conditions
and pre- and post- conditions of its incoming and outgoing transitions. Jung
assumes that the system is modelled with aggregated states where each state
is defined with a formal condition expressed over system variables. Except
state conditions, each outgoing transition is associated with its pre-condition
and each incoming transition with its post-condition.

The notion aggregate granularity states is first introduced by Binder [7].
He differentiates between primitive and aggregate granularity levels of
states where primitive granularity defines a state as one combination of
system variables. This implies that there are as many states as there are
combinations of values of variables. Instead using a combination of system
variable values, an aggregate granularity system state is defined using
ranges of variable values that the system has when residing in the given state.
The number of states in a system is then determined by the abstraction level
used to detect states. The higher the abstraction level, the lower the number
of states. To maintain proper level of abstraction, each state should
represent a single semantic in which a user is interested. That is,
each state should have a single semantic and each single semantic should be
represented by a single state.

Following this idea, Jung defines the number of semantics within a state as
a number of possible partitions we can make in a set of conditions comprising
of preconditions, postconditions and state condition. If there is only one
possible partition, it means all that pre- and post- conditions are the same
as state condition which implies state has a single meaning. Cohesiveness
of a state (COS) is then defined as reciprocal to the number of semantics
of a state, meaning the more semantic a state has, the less cohesive it is.

In addition, Jung defined similar states as those having (at least) one
same incoming and outgoing transition. In this context, same transition
means, for incoming transition, that they have the same start state and the
same associated event. For outgoing transitions, it means that they have the
same destination state and the same associated event. If a state has exactly
one semantic, the two states split from single state have same incoming and
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Figure 10: Example of states with different degree of cohesiveness. Note the
difference in pre- and post-conditions (source [3])

outgoing transition. Similar states represent the same semantics as a result
of unnecessary partitioning.

Jung shows that understandability of state diagrams can worsen if states
in state diagrams have many similar states. He defined average cohesive-
ness of states (ACOS) of state diagram SD as average cohesiveness value
of all states:

ACOS(SD) = (
∑
s

COS(s))/ | S |

Since COS(s) ≤ 1 , ACOS is always between 0 and 1. If it is 1, all states
have exactly one semantics.

Figure 11: Example of state partitions (source [3])

Figure 12: Example of similar states (source [3])
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Another metric proposed by Jung is the average number of similar
states of states (ASSOS). It is defined as the average number of similar
states for all states within state a diagram. ASSOS is equal or greater then
zero. If it is zero, then there is no pair of similar states, different semantic is
represented with different state. High ASSOS implies there are many similar
states that represent same semantics.

ASSOS(SD) = (
∑
s

| SS(s) |)/ | S |

In his later work [2], Jung introduced and empirically evaluated another
metric, state machine understandability metric(SUM) which is based
on ACOS and ASSOS metrics. This empirical study confirmed that simplic-
ity does not positively affect understandability of state machines.

Problem with Jung’s metrics is that it assumes explicit existence of state
and transition conditions, which are usually not expressed in formal way.
Although it is possible to express conditions and constraints in formal way
using Object Constraint Language (OCL) [76], this is rarely the case,
even in software development methods that use state machines in formal
way (i.e. generate code from them) [49] [65]. Usually states are identified
as abstractions of life-cycle of entity they describe which implicitly define
constraints on variable values.

3.3 Component model complexity metrics

UML standard version [55] defines component rather vaguely. It defines a
component ”as a modular unit with well-defined interfaces that is replaceable
within its environment”. A reuse aspect of components is an important one
since components should always be considered as an autonomous unit with a
system. They have one or more provided and/or required interfaces and its
internals are hidden and inaccessible to external entities. Component depen-
dencies are defined only by its required interfaces, resulting in components
being rather independent. As a result, components can be flexibly reused
and replaced by connecting (“wiring”) them together. Autonomy and reuse
of components applies at deployment time as well as to design time. This
means that implementation of a component should also be possible to deploy
and re-deploy independently, for example to update a running system.

There is very little literature about UML component complexity metrics.
Because of lack of precise semantics, associated standards and tools, UML
component diagrams are rarely used in practice. When they are used, it
is usually in informal fashion. However, thigs are about to change in this
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field. Formal software development methodologies based on UML such Exe-
cutable UML [49] and ROOM [65] have already introduced concepts of com-
ponents and composite structures with rather precise semantics. However,
these methodologies are typically used in very specific (mostly real-time) do-
mains and they are far from ”mainstream” UML users. This situation will
hopefully soon change since beta version of Precise semantics of UML com-
posite structures standard [56] is published by Object Managament Group
(OMG).

Most of the existing techniques for calculating component complexity as-
sumes availability of the source code, and are dependant on language of im-
plementation. One of the rare studies about component complexity measured
on UML models is done by Mahmood [44] [45]. By measuring component
complexity from UML specification we can get complexity estimates very
early in the software development process. He identified that component
complexity depends on complexity of interfaces, constraints on those
interfaces and interactions on those interfaces

Interface complexity is based on number of operations (NO) and num-
ber of parameters (NP). First we check the NO and NP values for the compo-
nent and determine component. complexity from the table shown on figure
13.

Figure 13: NO/NP complexity metrics

After that, manual (or automated [58]) function point analysis is done to
categorize interfaces as ILF (Internal Logical File) or ELF (external logical
file). Interfaces that have operations that change attributes of other interfaces
are considered as ILF, all other are categorized as ELF.

Total interface complexity ICi of component i is then calculated as sum of
ILFi and ELFi which are weighted values for component interfaces classified
based on their complexity.

Interface constraints are exposed as OCL [76] pre- and post-conditions
for each operations. Pre-conditions are assertions that component assumes
before operation is invoked and are usually expressed as predicates over op-
erations input parameters. Post-conditions are component guarantees that
will hold after operation has been invoked. They are expressed as predicates
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Figure 14: Weights for calculation of interface complexity are based on two
classification: NO/NP complexity classification and classification based on
function point analysis

over both, input and output parameters. In addition, operation pre- and
postconditions depend on the state maintained by the component. This set
of invariants associated with interface is also expressed as predicates over
interface state model that will always hold. Finally, each component specifi-
cation has inter-interface conditions that are predicates over the state model
of all component interfaces. Mahmood proposed using McCabe’s cyclomatic
complexity to measure component constraint complexity.

For calculating complexity of interactions over interfaces, UML
collaboration diagrams are used. There are two factors affecting interaction
complexity: frequency and interaction content.

Each collaboration diagram shows one or more interactions where each
interaction shows one possible execution flow. Interaction frequency IFx

for operation Ox is defined as ratio of the number of interactions exchanged
in that operation, over the total number of interactions exchanged during
scenario Sx: IFx = Mo/Mi where Mo is number of interactions involving
operation, and Mi is total number of interactions in given scenario.

Information content is characterized by information received and sent
during interaction. Measure of complexity of information content is done by
presenting data types used on interfaces as hierarchical directed graph called
component data type graph. Number of hierarchical levels and number of
different data types are two actors affecting information content complexity:

CM(W, p) = p+
n∑

i=1

CM(Yi, p+ 1)

where CM is complexity of data structure graph W , p is number of the
level where this data type occurs, Yi is the data type Y of i-th data field in
structured data type including n fields.
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Overall interaction complexity (CC) is then defined as:

CC =
max∑
i=1

(IFi ∗
n∑

j=1

CMj)

where i is the interface operation for component and j is the number of data
types involved in information content exchange for interface operation.

This technique enables designers and developers to measure component
complexity by quantitative and objective metrics early in the specification
phase. However, problem with this approach is that it assumes existence of
OCL-based constraints over interfaces and components as well as interaction
diagrams. However, this assumption is frequantly not fulfilled.
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4 Introduction to Executable UML modelling

As part of doctoral thesis work, a selection of previously analysed source code
and UML model metrics will be adapted and applied to xtUML models. This
chapter will give an introduction to the xtUML methodology, as well as brief
description of other similar UML methodologies and standards in the field.

4.1 Executable and translatable UML (xtUML)

XtUML originates from Shlaer-Mellor methodology [49]. XtUML stands for
executable and translatable Unified Modelling Language. It uses graphical
notation of the standard UML but also defines precise execution and timing
rules. That makes it formal software development method but also differs it
from standard UML which is merely a graphical notation. Models created by
xtUML method are semantically (Turing) complete. This mean that infor-
mation about software structure, behaviour and processing is semantically
integrated in such a way that models can be executed.

XtUML model is the whole made from 4 different interconnected mod-
els: component model defining overall system architecture, class model
defining concepts and relations within a component, state machine model
defining class instance life-cycle and processing model specifying execution
details. First three models are graphical while processing is textual.

Figure 15: Component diagram example taken from BridgePoint xtUML tool
[60])

Each component is a considered as black-box from outside and only uses
interfaces to communicate with other components. In order to minimize
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complex data types on interfaces, each component is usually mapped to single
subject matter domain. Good domain separation presents a challenge in
xtUML.

XtUML models support synchronous and asynchronous execution and
communication between components. Synchronous inter-component commu-
nication is enabled with interface operations while asynchronous use interface
signals. Synchronous execution within component is realized, among others,
using class and instance operations. Classes use state machines and event
dispatching mechanism for asynchronous execution.

Figure 16: Class diagram example taken from BridgePoint xtUML tool [60])

Processing (code) can be specified in many places in xtUML model. Com-
ponent interfaces, from inside perspective have ports. Port processing code
will be executed when receiver component receives signal or has interface
operation invoked. Classes may have operations (instance and class based)
which can also contain processing code. In state machines, processing code
can be specified in states and transitions so Meally, Moore and hybrid state
machines are possible.

Executablity of models is key feature that makes a difference. Executable
models are testable, making it possible to debug them, even before any code
is generated. Special ”virtual machines” exist that are capable to interpret
executable model. Executable models also imply existence of application and
test models.

Executable models also enable completeness of generated code. It con-
tains all required information and therefore can be compiled into binary
without any ”handcoding”. Even more, method suggests refraining from
any ”manual” interventions in generated code since it is considered as only
a temporary form of application towards binary form used in exploitation.
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Figure 17: State machine diagram example taken from BridgePoint xtUML
tool [60])

Figure 18: Processing model example taken from BridgePoint xtUML tool
[60])

Similar approach most of today’s programming languages have towards as-
sembly code. If your C++ code is not working as expected, you will not
correct it in assembly, you will do in C++. In rare occasions, if there is a
bug in compiler, an interventions will be needed there as well. It is similar
in xtUML: bugs will be corrected in xtUML model or, rarely, in model com-
piler used to generated code from it. This is a reason why xtUML is often
considered as higher abstraction software development language.

Traditionally used only in real-time domain and supported by only one
proprietary tool [60], this methodology is relatively unknown in the industry.
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In attempt to change this, this relatively mature tool became completely open
source in November 2014, including its previously protected model interpreter
and industry-grade code generators.

4.2 Real-time Object-Oriented Modeling (ROOM) method-
ology

UML-RT is a UML profile defined by IBM for the design of distributed
event-based applications. The profile is based on the Real-Time Object-
Oriented Modeling (ROOM) methodology [65] and was implemented in the
RSA-RTE [47] product, an extension of IBM’s Rational Software Architect
(RSA) product.

The basis of UML-RT is the notion of capsules that at the same time
might have both internal structure (via capsule parts) and behavior (via a
state machine). Capsules can be nested, and can communicate synchronously
and asynchronously via messages that are sent and received through ports.
The types of messages that a port can transmit are defined by protocols.
Unlike xtUML components, capsules can be created both statically at design
time and dynamically at run-time.

RSA-RTE tool allows several languages to be used to specify actions. This
includes C, C++, Java and some other. Model execution is only possible by
translation to source code, but no model-level interpreter is possible, at least
not in the sense provided by BridgePoint [60] tool.

4.3 Foundational Subset for Executable UML Models
(FUML)

Realizing importance of simplicity and clear semantics that are missing from
UML standards, OMG defined semantics of a foundational subset for ex-
ecutable UML models(fUML)[57]. Main goal of this standard is to act as
intermediary language between ”surface subsets” of UML used for modeling
and computational platform languages used as the target for model execu-
tion. FUML is designed to be compact in order to facilitate definition of
a clear semantics and implementation of execution tools. In addition, it is
supposed to be easily translated from common surface subsets of UML to
fUML and from fUML to common computational platform languages. How-
ever, if the feature to be translated from surface UML is excluded from fUML,
it is required for the surface-to-fUML translator to generate a coordinated set
of fUML elements that has the same effect as that feature. Then the fUML-
to-platform translator would need to recognize the pattern generated by the
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surface-to-fUML generator, in order to map this back into the desired fea-
ture of the target language. Compactness can therefore conflict with ease of
translation.

Figure 19: Translation to and from fUML models (source [57])

It is clear that future of UML is in executable modelling which assumes
simplicity and clear execution semantics. However, the problem with fUML
is that tool support is practically non-existent and it still remains to be seen
how it will be accepted by the community.
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5 Conclusion and future work

In this paper, we have presented the state-of-the-art in software and UML
model complexity metrics, as well as a framework for theoretical evaluation
of those metrics.

Software complexity metrics typically measure certain internal software
quality attributes, but are usually used to predict some external software
quality such as maintainability or understandability. We have also presented
results of a series of empirical studies that have explored the correlation
between metrics and those external software attributes.

The most frequently used metrics include the size expressed as the num-
ber of lines of code, McCabe’s cyclomatic complexity, and the Halstead’s
effort. However, several empirical studies have shown that there are bet-
ter metrics to be used, for example cognitive metrics which assign cognitive
complexity weights to basic control structures. Another interesting group
of metrics is the one based on data and information flow, e.g. Oviedo’s data
flow complexity is particularly interesting since it shows context dependence.

Regarding model complexity metrics, class model metrics are by far the
most investigated. Except for typical size and structural complexity metrics,
most of these metrics measure some form of coupling between objects.

In the end, we gave an overview of executable UML technologies and
standards with a special focus on xtUML methodology. In future work, we
will make a selection of metrics analysed in this report, adapt them, and
apply to xtUML models. We will implement algorithms for their automated
calculation and perform an empirical study in order to evaluate how the dis-
tribution of these complexity metrics affects the understandability of xtUML
models.
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