Seminar doktoranada i poslijedoktoranada 2015.

"Dani FESB-a 2015.", Split, 25. - 31. svibnja 2015.

Jednociljna i višeciljna optimizacija korištenjem HUMANT algoritma

(Single-Objective and Multi-Objective Optimization using HUMANT Algorithm)

Marko Mladineo, Ph.D.

University of Split, Faculty of Electrical Engineering, Mechanical, Engineering and Naval Architecture

marko.mladineo@fesb.hr

HUMANT algorithm

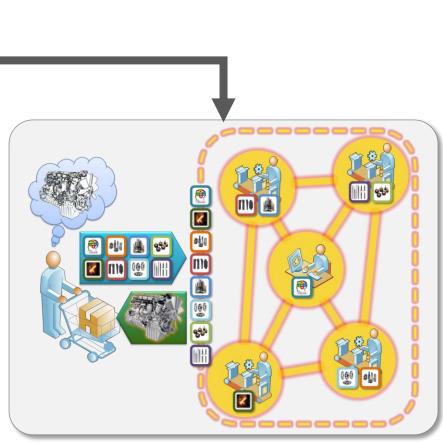
HUMANT = *HUManoid ANT*

Originally designed to **solve Partner Selection Problem** (PSP)

Regional production networks

Aim:

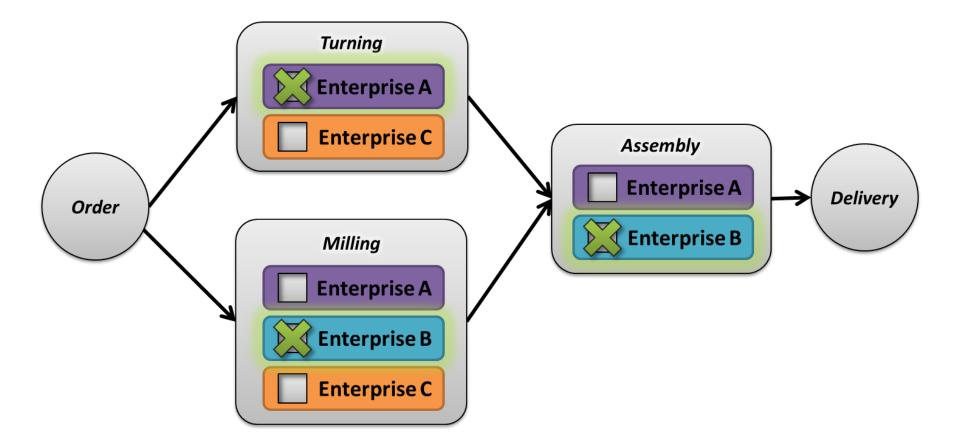
Production of complex products through networked collaboration called **Virtual Enterprise**



Partner Selection Problem (PSP)

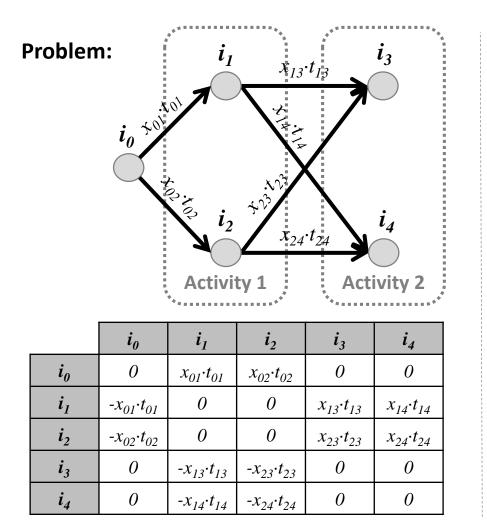
Aim:

Selection of optimal agent (enterprise) for each activity (process)



Single-Objective Partner Selection Problem (PSP)

Optimal agent must be assigned to each activity of project. Objective is to **minimize Total time** *T*:



Fitness function:

$$T(x) = \sum_{i=1}^{m} \sum_{i=1}^{n} x_{ij} \cdot t_{ij} \to Min$$

Constraints:

$$x_{ij} = 0 \ or \ x_{ij} = 1$$

$$\sum_{i=1}^{m} x_{ij}, j = 1, 2, \dots, n$$

 $x_{ij} \cdot t_{ij} \ge 0$

Multi-Objective Partner Selection Problem (PSP)

Minimization of transport: $S(x) = \sum_{i=1}^{m} \sum_{i=1}^{n} x_{ij} \cdot s_{ij} \rightarrow Min$

Minimization of cost:

$$\boldsymbol{C}(\boldsymbol{x}) = \sum_{i=1}^{m} \sum_{i=1}^{n} \boldsymbol{x}_{ij} \cdot \boldsymbol{c}_{ij} \rightarrow \boldsymbol{M}\boldsymbol{i}\boldsymbol{n}$$

Maximization of quality:

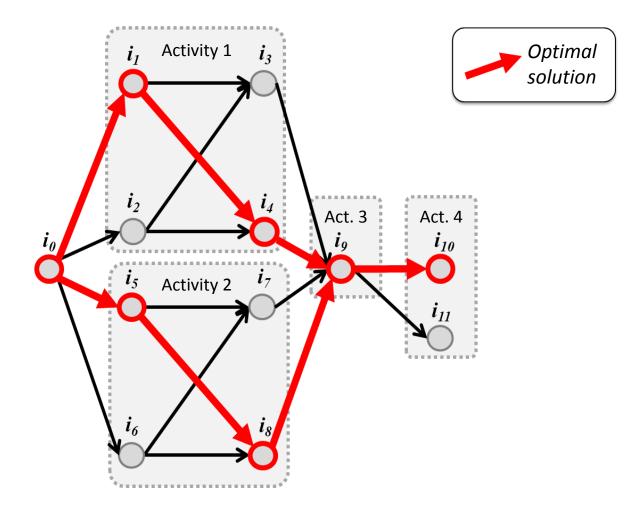
...

$$\boldsymbol{Q}(x) = \sum_{i=1}^{m} \sum_{i=1}^{n} x_{ij} \cdot q_{ij} \rightarrow \boldsymbol{Max}$$

...

Partner Selection Problem with parallel activities

In practice: Problem instances **usually have parallel activities**



Example of PSP instance and its optimal solution

PSP instance with 4 activities, 10 enterprises and 3 criteria (S, Q, C)

Optimum = [48 113 0.64] Act. 2 Act. 3 Act. 4

Graph represents manufacturing process:

Geographic location of enterprises:

Metaheuristic algorithms and MCDM methods

Agorithms for metaheuristic optimization:

- deterministic vs. stochastic
- nature inspired vs. non-nature inspired
- using memory vs. no memory
- based on single solution vs. based on population of solutions
- iterative vs. greedy

Multi-Criteria Decision-Making (MCDM) methods:

- based on utility functions
- outranking methods
- interactive methods

Metaheuristic algorithms and MCDM methods

Agorithms for metaheuristic optimization:

- Ant Colony Optimization (ACO)
- Firefly Algorithm (FA)
- Genetic Algorithm (GA)
- Particle Swarm Optimization (PSO)
- Simulated Annealing (SA)
- Cuckoo Search (CS)

Multi-Criteria Decision-Making (MCDM) methods:

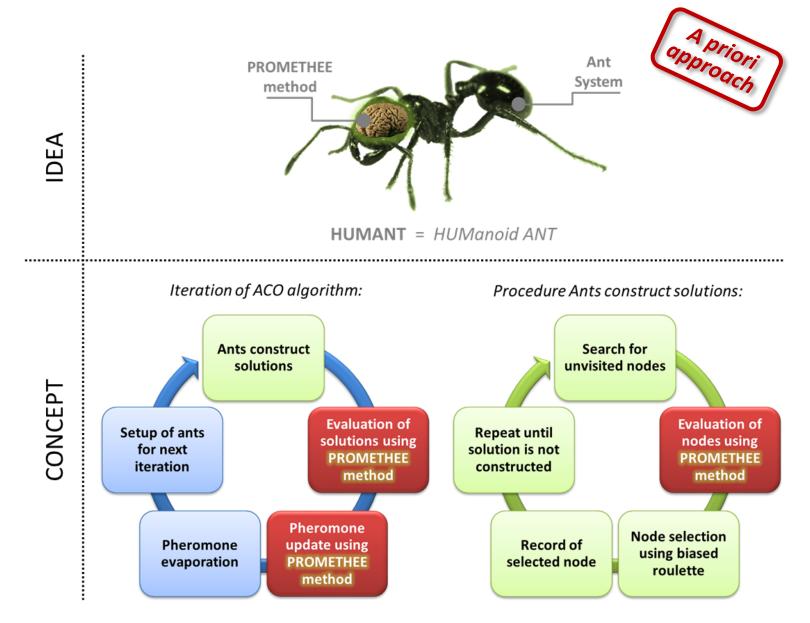
- MAUT
- AHP
- ELECTRE
- PROMETHEE
- TOPSIS
- VIMDA

Multi-Objective optimization

There are three possible approaches:

- **A priori approach** decision-maker provides his preferences before the optimization process.
- A posteriori approach the optimization process determines a set of Pareto solutions, and then decision-maker chooses one solution from the set of solutions provided by the algorithm.
- Interactive approach there is a progressive interaction between the decision-maker and the solver, i.e. the knowledge gained during the optimization process helps decision-maker to define his preferences.

Idea and concept of HUMANT algorithm

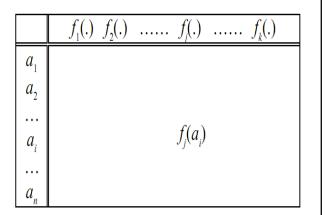


PROMETHEE method

Input

Black box

An input is a matrix consisting of set of **potential alternatives** (enterprises) A, where each a element of Ahas its f(a) which represents evaluation of one criteria:



Method **PROMETHEE I** ranks actions by a **partial pre-order**, with the following dominance flows:

$$\Phi^+(a) = \frac{1}{n-1} \sum_{x \in A} \pi(a, x)$$

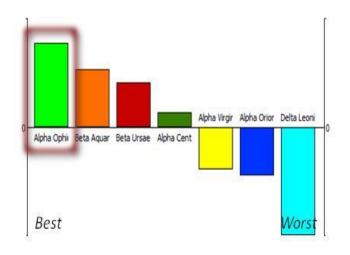
$$\Phi^{-}(a) = \frac{1}{n-1} \sum_{x \in A} \pi(x, a)$$

Method **PROMETHEE II** ranks the actions by **total pre-order**:

$$\Phi(a) = \Phi^+(a) - \Phi^-(a)$$

An output is set of **ranked alternatives** (enterprises):

Output

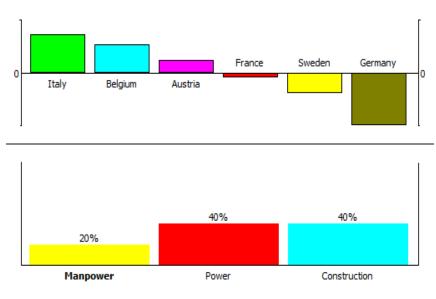


PROMETHEE method

Example of evaluation of 6 projects using 3 criteria

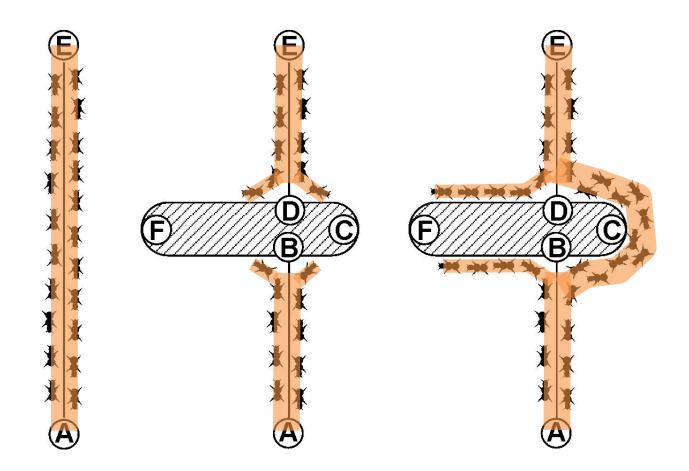
ightarrow	Scenario1	Manpower	Power	Construction
	Unit	persons	MW	M€
	Cluster/Group		•	
	Preferences			
	Min/Max	min	max	min
	Weight	0,20	0,40	0,40
	Preference Fn.	U-shape	V-shape	Linear
	Thresholds	absolute	absolute	absolute
	- Q: Indifference	10	n/a	50
	- P: Preference	n/a	300	500
	- S: Gaussian	n/a	n/a	n/a
	Statistics			
	Evaluations			
V	Italy	80	900	600
V	Belgium	65	580	200
V	Germany	83	600	400
V	Sweden	40	800	1000
V	Austria	52	720	600
V	France	94	960	700

INPUT:



OUTPUT:

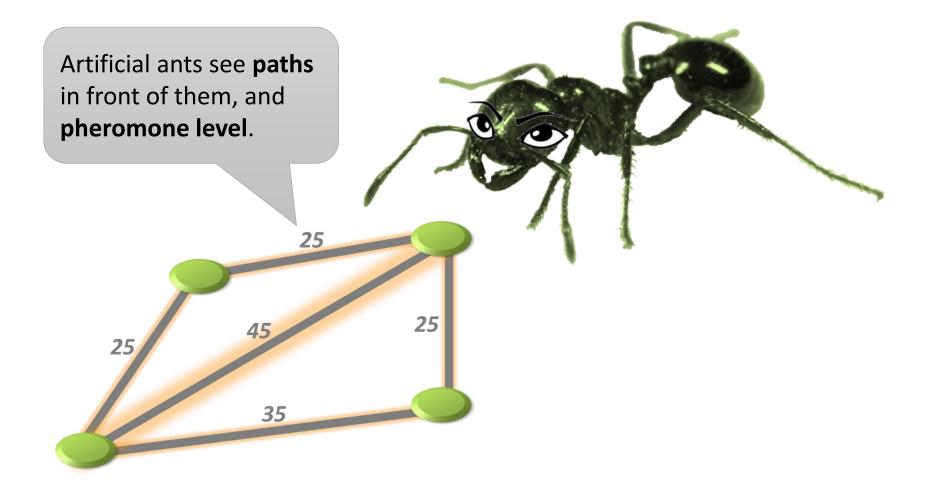
Ant System



Ants choose their path randomly, but not completely randomly, the criterion is also a **level of pheromone trail on each path**.

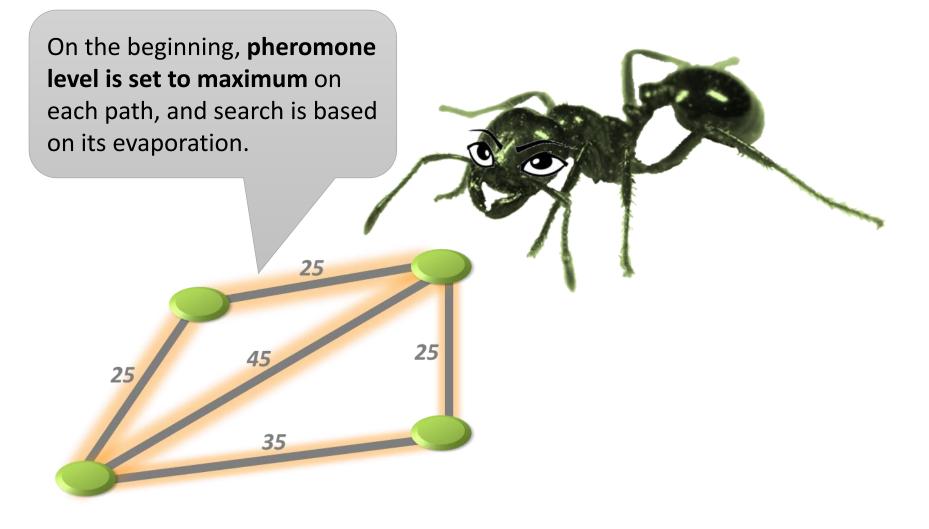
Ant System (Ant Colony Optimization)

In 1992 M. Dorigo presented Ant System of artificial ants with vision



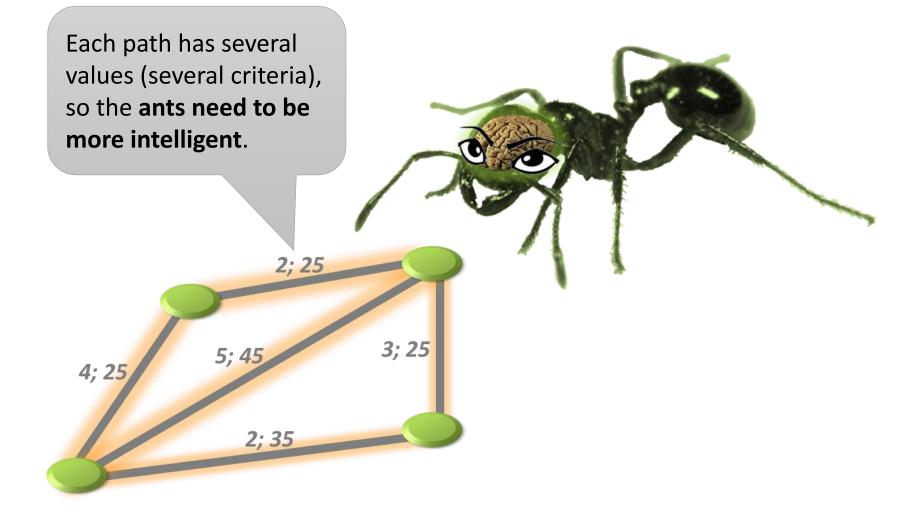
MAX-MIN Ant System (MMAS)

In 2000 T. Stützle and H.H. Hoos presented MAX-MIN Ant System



Multi-Objective Ant Colony Optimization (MO-ACO)

New generation of intelligent Multi-Objective Ant Algorithms



Similar researches

in short

I am a PhD student working at the Université Libre de Bruxelles (ULB) in Brussels, Belgium, in the Department of Computer & Decision Engineering (CoDE). I have a scholarship funded by the Scientific Research Directorate of the French Community of Belgium in the context of the Meta-X Project. I am working under the supervision of Pr. Yves De Smet and Dr. Thomas Stuetzle.

For some details on what I am working on, please pay a visit to the research tab.

research topic

I am working on Metaheuristics for solving MOCOP's. In particular, I am interested in applying community to the well established ACO metaheuristic.

The goal of my research is to consider how to integrate a decision maker's a priori preference heuristics. Currently I am examining possible paths of applying preference modeling techniq community in a multiobjective ant colony optimization (MO-ACO) algorithm.

ence modelling techniques developed in the MCDA

ultiobjective combinatorial optimization oped by the multicriteria decision aid (MCDA)

Dr. Thomas Stuetzle.

Stefan Eppe

Difference between HUMANT algorithm and ACO

Main ACO equations:

Main HUMANT equations:

$$(p_{ij})_{k} = \frac{[\tau_{ij}(t)]^{\alpha} \cdot [\eta_{ij}]^{\beta}}{\sum_{k} [\tau_{ik}(t)]^{\alpha} \cdot [\eta_{ik}]^{\beta}} \qquad p_{ij} = \frac{[\tau_{ij}(t)]^{\alpha} \cdot [\Phi'_{ij}]^{\beta}}{\sum_{k=1}^{n} [\tau_{ik}(t)]^{\alpha} \cdot [\Phi'_{ik}]^{\beta}}$$

$$\phi'_{ij} = \frac{\frac{1}{n-1} \sum_{k=1}^{n} (\Pi(X_{ij}, X_{ik}) + (1 - \Pi(X_{ik}, X_{ij})))}{2}$$
PROMETHEE method
$$(\Delta \tau_{ij})_{k} = \frac{Q}{L_{k}} \qquad \Delta \tau_{ij} = 2(\Phi^{+}(x) - \Phi^{-}(x)) = 2(\Pi(x, s^{id}) - \Pi(s^{id}, x))$$

Solution to the problem of non-dominating alternatives

$\boldsymbol{p_{ij}} = \frac{[\tau_{ij}(t)]^{\boldsymbol{\alpha}} \cdot [\eta_{ij}]^{\boldsymbol{\beta}}}{\sum_{k} [\tau_{ik}(t)]^{\boldsymbol{\alpha}} \cdot [\eta_{ik}]^{\boldsymbol{\beta}}}$ Node number Pheromone τ_{ii} Distance $1/\eta_{ii}$			Probability p_{ij} using ACO calculation $(\alpha = 1, \beta = 4)$	Probability p_{ij} using PROMETHEE calculation $(\alpha = 1, \beta = 4)$	Probability p_{ij} using modified PROMETHEE calculation $(\alpha = 1, \beta = 47)$
8	1	463	52,2%	5,8%	48,1%
7	1	563	23,9%	5,6%	27,9%
21	1	720	8,9%	5,2%	11,7%
39	- 1	825	5,2%	4,9%	6,5%
15	1	1004	2,4%	4,5%	2,3%
37	1	1029	2,1%	4,4%	2,0%
2	1	1205	1,1%	4,1%	0,7%
14	1	1290	0,9%	3,9%	0.4%
45	1	1542	0,4%	3,4%	Solution:
30	1	1574	0,4%	3,4%	Solution: $\beta = n$
				•••	

HUMANT algorithm parameters

Comparison of parameters of MAX-MIN AS and HUMANT algorithm

Parameter description	MAX-MIN ant system	HUMANT algorithm
Importance of pheromone trail on edge	α	α
Importance of weight (cost) of edge	β	γ
Maximal level of pheromone trail	$ au_{max}$	$ au_{max}$
Minimal level of pheromone trail	$ au_{min}$	$ au_{min}$
Pheromone evaporation rate	ρ	ρ
Ideal solution	-	s^{id}

HUMANT algorithm

and

Preliminary results of HUMANT algorithm on TSP

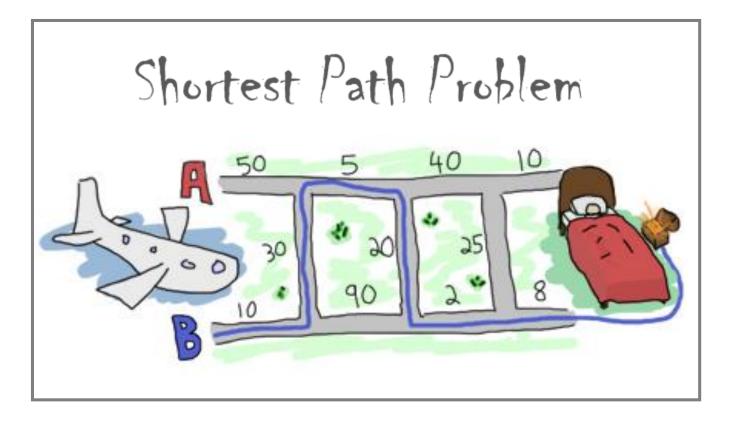
Performance of HUMANT algorithm on TSP instances from *TSPLIB*

Problem instance	HUMANT algorithm	MAX-MIN ant system (MMAS)	Ant Colony System (ACS)	Ant System (AS)
48-cities problem (att48)	10662 (0.32%)	-	-	-
51-cities problem (eil51)	455.1	427.6	428.1	437.3
	(6.83%)	(0.38%)	(0.49%)	(2.65%)
100-cities problem (<i>kroA100</i>)	21358.3	21320.3	21420.0	22471.4
	(0.36%)	(0.18%)	(0.65%)	(5.59%)

HUMANT algorithm is **better on 100-cities problem than 51-cities problem**, it is even better than original ACS and AS. However, *eil51* is a specific problem with many local optima and HUMANT algorithm has **very strong convergence**.

HUMANT algorithm

and



Preliminary results of HUMANT algorithm on SPP

On Shortest Path Problem it is possible to test **Multi-Objective approach** to Single-Objective optimization problems

25

45°

25

30°

35

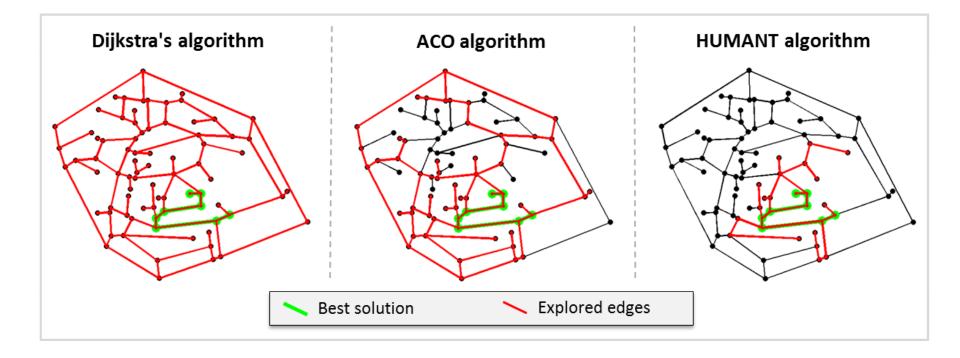
45

Multi-objective (bi-criteria) approach to SPP: distance to the next node and deviation of the path from Euclidean distance between origin and destination

30

Preliminary results of HUMANT algorithm on SPP

Using no constraints HUMANT algorithm explores only relevant area



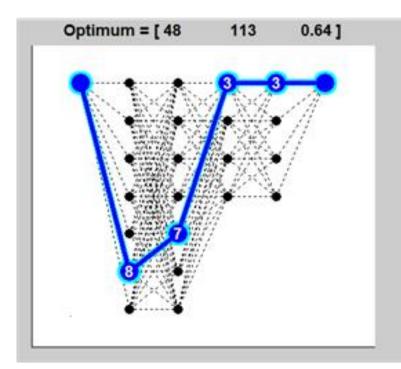
HUMANT algorithm

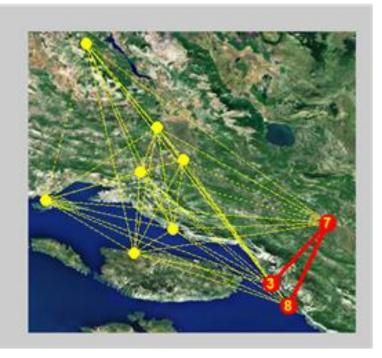
and

Preliminary results of HUMANT algorithm on PSP

Following parameters were used to solve this problem: $\alpha = 1$, $\gamma = 1$, $\rho = 0.4$, $\tau_{min} = 0$, $\tau_{max} = 1$

and following criteria weights: $w_{cost} = 0.15, w_{transport} = 0.4, w_{quality} = 0.45$





Conclusion

Pros:

- can be applied to singleobjective and multi-objective problems
- strong convergence finds optimum very fast
- automatic calculation of PROMETHEE parameters
- multi-objective approach to single-objective optimization problems can be used
- parallelization is possible

Cons:

- strong convergence not suitable for problems with many optima
- more complex calculations, slower than standard ACO
- only for problems that can be expressed as mathematical graph